Namespaces
Variants
Actions

Difference between revisions of "Fractional-linear function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
f0412401.png
 +
$#A+1 = 38 n = 0
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/F041/F.0401240 Fractional\AAhlinear function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A function of the type
 
A function of the type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412401.png" /></td> </tr></table>
+
$$
 +
= L ( z)  =
 +
\frac{a _ {1} z _ {1} + \dots + a _ {n} z _ {n} + b }{c _ {1} z _ {1} + \dots + c _ {n} z _ {n} + d }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412402.png" /> are complex or real variables, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412403.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412406.png" /> are complex or real coefficients, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412407.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412408.png" />, the fractional-linear function is an integral-linear function; if the rank of the matrix
+
where $  z = ( z _ {1} \dots z _ {n} ) $
 +
are complex or real variables, $  a _ {j} $,  
 +
$  b $,  
 +
$  c _ {j} $,  
 +
$  d $
 +
are complex or real coefficients, and $  | c _ {1} | + \dots + | c _ {n} | + | d | > 0 $.  
 +
If $  | c _ {1} | = \dots = | c _ {n} | = 0 $,  
 +
the fractional-linear function is an integral-linear function; if the rank of the matrix
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f0412409.png" /></td> </tr></table>
+
$$
 +
= \left \|
 +
\begin{array}{cccc}
 +
a _ {1}  &\dots  &a _ {n}  & b  \\
 +
c _ {1}  &\dots  &c _ {n}  & d  \\
 +
\end{array}
 +
\right \|
 +
$$
  
is equal to one, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124010.png" /> is a constant. A proper fractional-linear function is obtained if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124011.png" /> and if the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124012.png" /> is two; it assumed in what follows that these conditions have been met.
+
is equal to one, $  L ( z) $
 +
is a constant. A proper fractional-linear function is obtained if $  | c _ {1} | + \dots + | c _ {n} | > 0 $
 +
and if the rank of $  A $
 +
is two; it assumed in what follows that these conditions have been met.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124016.png" /> are real, the graph of the fractional-linear function is an equilateral hyperbola with the asymptotes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124018.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124027.png" /> are real, the graph of the fractional-linear function is hyperbolic paraboloid.
+
If $  n = 1 $
 +
and $  a _ {1} = a $,  
 +
$  c _ {1} = c $,  
 +
$  z _ {1} = z $
 +
are real, the graph of the fractional-linear function is an equilateral hyperbola with the asymptotes $  z = - d / c $
 +
and $  w = a / c $.  
 +
If $  n = 2 $
 +
and $  a _ {1} $,  
 +
$  a _ {2} $,  
 +
$  b $,  
 +
$  c _ {1} $,  
 +
$  c _ {2} $,  
 +
$  d $,  
 +
$  z _ {1} $,  
 +
$  z _ {2} $
 +
are real, the graph of the fractional-linear function is hyperbolic paraboloid.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124028.png" />, the fractional-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124029.png" /> is an analytic function of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124030.png" /> everywhere in the extended complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124031.png" />, except at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124032.png" /> at which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124033.png" /> has a simple pole. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124034.png" />, the fractional-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124035.png" /> is a meromorphic function in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124036.png" /> of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124037.png" />, with the set
+
If $  n = 1 $,  
 +
the fractional-linear function $  L ( z) $
 +
is an analytic function of the complex variable $  z $
 +
everywhere in the extended complex plane $  \overline{\mathbf C}\; $,  
 +
except at the point $  z = - d / c $
 +
at which $  L ( z) $
 +
has a simple pole. If $  n \geq  1 $,  
 +
the fractional-linear function $  L ( z) $
 +
is a meromorphic function in the space $  \mathbf C  ^ {n} $
 +
of the complex variable $  z = ( z _ {1} \dots z _ {n} ) $,  
 +
with the set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041240/f04124038.png" /></td> </tr></table>
+
$$
 +
\{ {z \in \mathbf C  ^ {n} } : {c _ {1} z _ {1} + \dots + c _ {n} z _ {n} +
 +
d = 0 } \}
 +
$$
  
 
as its polar set.
 
as its polar set.
  
 
See also [[Fractional-linear mapping|Fractional-linear mapping]].
 
See also [[Fractional-linear mapping|Fractional-linear mapping]].

Latest revision as of 19:39, 5 June 2020


A function of the type

$$ w = L ( z) = \frac{a _ {1} z _ {1} + \dots + a _ {n} z _ {n} + b }{c _ {1} z _ {1} + \dots + c _ {n} z _ {n} + d } , $$

where $ z = ( z _ {1} \dots z _ {n} ) $ are complex or real variables, $ a _ {j} $, $ b $, $ c _ {j} $, $ d $ are complex or real coefficients, and $ | c _ {1} | + \dots + | c _ {n} | + | d | > 0 $. If $ | c _ {1} | = \dots = | c _ {n} | = 0 $, the fractional-linear function is an integral-linear function; if the rank of the matrix

$$ A = \left \| \begin{array}{cccc} a _ {1} &\dots &a _ {n} & b \\ c _ {1} &\dots &c _ {n} & d \\ \end{array} \right \| $$

is equal to one, $ L ( z) $ is a constant. A proper fractional-linear function is obtained if $ | c _ {1} | + \dots + | c _ {n} | > 0 $ and if the rank of $ A $ is two; it assumed in what follows that these conditions have been met.

If $ n = 1 $ and $ a _ {1} = a $, $ c _ {1} = c $, $ z _ {1} = z $ are real, the graph of the fractional-linear function is an equilateral hyperbola with the asymptotes $ z = - d / c $ and $ w = a / c $. If $ n = 2 $ and $ a _ {1} $, $ a _ {2} $, $ b $, $ c _ {1} $, $ c _ {2} $, $ d $, $ z _ {1} $, $ z _ {2} $ are real, the graph of the fractional-linear function is hyperbolic paraboloid.

If $ n = 1 $, the fractional-linear function $ L ( z) $ is an analytic function of the complex variable $ z $ everywhere in the extended complex plane $ \overline{\mathbf C}\; $, except at the point $ z = - d / c $ at which $ L ( z) $ has a simple pole. If $ n \geq 1 $, the fractional-linear function $ L ( z) $ is a meromorphic function in the space $ \mathbf C ^ {n} $ of the complex variable $ z = ( z _ {1} \dots z _ {n} ) $, with the set

$$ \{ {z \in \mathbf C ^ {n} } : {c _ {1} z _ {1} + \dots + c _ {n} z _ {n} + d = 0 } \} $$

as its polar set.

See also Fractional-linear mapping.

How to Cite This Entry:
Fractional-linear function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fractional-linear_function&oldid=13780
This article was adapted from an original article by E.P. DolzhenkoE.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article