Difference between revisions of "Fourier-Stieltjes series"
Ulf Rehmann (talk | contribs) m (moved Fourier–Stieltjes series to Fourier-Stieltjes series: ascii title)  | 
				Ulf Rehmann (talk | contribs)  m (tex encoded by computer)  | 
				||
| Line 1: | Line 1: | ||
| + | <!--  | ||
| + | f0411301.png  | ||
| + | $#A+1 = 24 n = 0  | ||
| + | $#C+1 = 24 : ~/encyclopedia/old_files/data/F041/F.0401130 Fourier\ANDStieltjes series  | ||
| + | Automatically converted into TeX, above some diagnostics.  | ||
| + | Please remove this comment and the {{TEX|auto}} line below,  | ||
| + | if TeX found to be correct.  | ||
| + | -->  | ||
| + | |||
| + | {{TEX|auto}}  | ||
| + | {{TEX|done}}  | ||
| + | |||
A series  | A series  | ||
| − | + | $$   | |
| + | {  | ||
| + | \frac{a _ {0} }{2}  | ||
| + |  } +  | ||
| + | \sum _ {n = 1 } ^  \infty    | ||
| + | ( a _ {n}  \cos  nx + b _ {n}  \sin  nx),  | ||
| + | $$  | ||
| − | where for   | + | where for  $  n = 0, 1 \dots $  | 
| − | + | $$   | |
| + | a _ {n}  = \   | ||
| + | {  | ||
| + | \frac{1} \pi   | ||
| + |  }  | ||
| + | \int\limits _ { 0 } ^ { {2 }  \pi }  | ||
| + | \cos  nx  dF ( x),\ \   | ||
| + | b _ {n}  = \   | ||
| + | {  | ||
| + | \frac{1} \pi   | ||
| + |  }  | ||
| + | \int\limits _ { 0 } ^ { {2 }  \pi }  | ||
| + | \sin  nx  dF ( x)  | ||
| + | $$  | ||
| − | (the integrals are taken in the sense of Stieltjes). Here   | + | (the integrals are taken in the sense of Stieltjes). Here  $  F $  | 
| + | is a function of bounded variation on  $  [ 0, 2 \pi ] $.    | ||
| + | Alternatively one could write  | ||
| − | + | $$ \tag{* }  | |
| + | dF ( x)  \sim \   | ||
| + | {  | ||
| + | \frac{a _ {0} }{2}  | ||
| + |  } +  | ||
| + | \sum _ {n = 1 } ^  \infty    | ||
| + | ( a _ {n}  \cos  nx + b _ {n}  \sin  nx).  | ||
| + | $$  | ||
| − | If   | + | If  $  F $  | 
| + | is absolutely continuous on  $  [ 0, 2 \pi ] $,   | ||
| + | then (*) is the Fourier series of the function  $  F ^ { \prime } $.    | ||
| + | In complex form the series (*) is  | ||
| − | + | $$   | |
| + | dF ( x)  \sim \   | ||
| + | \sum _ {n = - \infty } ^ { {+ }  \infty }  | ||
| + | c _ {n} e  ^ {inx} ,  | ||
| + | $$  | ||
where  | where  | ||
| − | + | $$   | |
| + | c _ {n}  = \   | ||
| + | {  | ||
| + | \frac{1}{2 \pi }  | ||
| + |  }  | ||
| + | \int\limits _ { 0 } ^ { {2 }  \pi }  | ||
| + | e  ^ {-} inx  dF ( x).  | ||
| + | $$  | ||
Moreover,  | Moreover,  | ||
| − | + | $$   | |
| + | F ( x) - c _ {0} x  \sim \   | ||
| + | C _ {0} + \sum _ {  | ||
| + | \begin{array}{c}  | ||
| + | n = - \infty \\  | ||
| + |  n \neq 0    | ||
| + | \end{array}  | ||
| + |  } ^  \infty    | ||
| + | |||
| + | \frac{c _ {n} }{in }  | ||
| + | |||
| + | e  ^ {inx} ,  | ||
| + | $$  | ||
| − | and   | + | and  $  \{ c _ {n} \} $  | 
| + | will be bounded. If  $  c _ {n} \rightarrow 0 $,    | ||
| + | then  $  F $  | ||
| + | is continuous on  $  [ 0, 2 \pi ] $.    | ||
| + | There is a continuous function  $  F $  | ||
| + | for which  $  c _ {n} $  | ||
| + | does not tend to  $  0 $  | ||
| + | as  $  n \rightarrow + \infty $.    | ||
| + | The series (*) is summable to  $  F ^ { \prime } ( x) $  | ||
| + | by the Cesàro method  $  ( C, r) $,   | ||
| + | $  r > 0 $,    | ||
| + | almost-everywhere on  $  [ 0, 2 \pi ] $.  | ||
====References====  | ====References====  | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Zygmund,   "Trigonometric series" , '''1''' , Cambridge Univ. Press  (1988)</TD></TR></table>  | <table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Zygmund,   "Trigonometric series" , '''1''' , Cambridge Univ. Press  (1988)</TD></TR></table>  | ||
Latest revision as of 19:39, 5 June 2020
A series
$$ { \frac{a _ {0} }{2} } + \sum _ {n = 1 } ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx), $$
where for $ n = 0, 1 \dots $
$$ a _ {n} = \ { \frac{1} \pi } \int\limits _ { 0 } ^ { {2 } \pi } \cos nx dF ( x),\ \ b _ {n} = \ { \frac{1} \pi } \int\limits _ { 0 } ^ { {2 } \pi } \sin nx dF ( x) $$
(the integrals are taken in the sense of Stieltjes). Here $ F $ is a function of bounded variation on $ [ 0, 2 \pi ] $. Alternatively one could write
$$ \tag{* } dF ( x) \sim \ { \frac{a _ {0} }{2} } + \sum _ {n = 1 } ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx). $$
If $ F $ is absolutely continuous on $ [ 0, 2 \pi ] $, then (*) is the Fourier series of the function $ F ^ { \prime } $. In complex form the series (*) is
$$ dF ( x) \sim \ \sum _ {n = - \infty } ^ { {+ } \infty } c _ {n} e ^ {inx} , $$
where
$$ c _ {n} = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } e ^ {-} inx dF ( x). $$
Moreover,
$$ F ( x) - c _ {0} x \sim \ C _ {0} + \sum _ { \begin{array}{c} n = - \infty \\ n \neq 0 \end{array} } ^ \infty \frac{c _ {n} }{in } e ^ {inx} , $$
and $ \{ c _ {n} \} $ will be bounded. If $ c _ {n} \rightarrow 0 $, then $ F $ is continuous on $ [ 0, 2 \pi ] $. There is a continuous function $ F $ for which $ c _ {n} $ does not tend to $ 0 $ as $ n \rightarrow + \infty $. The series (*) is summable to $ F ^ { \prime } ( x) $ by the Cesàro method $ ( C, r) $, $ r > 0 $, almost-everywhere on $ [ 0, 2 \pi ] $.
References
| [1] | A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988) | 
Fourier-Stieltjes series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier-Stieltjes_series&oldid=22447