Difference between revisions of "Fourier-Stieltjes series"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | f0411301.png | ||
| + | $#A+1 = 24 n = 0 | ||
| + | $#C+1 = 24 : ~/encyclopedia/old_files/data/F041/F.0401130 Fourier\ANDStieltjes series | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
A series | A series | ||
| − | + | $$ | |
| + | { | ||
| + | \frac{a _ {0} }{2} | ||
| + | } + | ||
| + | \sum _ {n = 1 } ^ \infty | ||
| + | ( a _ {n} \cos nx + b _ {n} \sin nx), | ||
| + | $$ | ||
| − | where for | + | where for $ n = 0, 1 \dots $ |
| − | + | $$ | |
| + | a _ {n} = \ | ||
| + | { | ||
| + | \frac{1} \pi | ||
| + | } | ||
| + | \int\limits _ { 0 } ^ { {2 } \pi } | ||
| + | \cos nx dF ( x),\ \ | ||
| + | b _ {n} = \ | ||
| + | { | ||
| + | \frac{1} \pi | ||
| + | } | ||
| + | \int\limits _ { 0 } ^ { {2 } \pi } | ||
| + | \sin nx dF ( x) | ||
| + | $$ | ||
| − | (the integrals are taken in the sense of Stieltjes). Here | + | (the integrals are taken in the sense of Stieltjes). Here $ F $ |
| + | is a function of bounded variation on $ [ 0, 2 \pi ] $. | ||
| + | Alternatively one could write | ||
| − | + | $$ \tag{* } | |
| + | dF ( x) \sim \ | ||
| + | { | ||
| + | \frac{a _ {0} }{2} | ||
| + | } + | ||
| + | \sum _ {n = 1 } ^ \infty | ||
| + | ( a _ {n} \cos nx + b _ {n} \sin nx). | ||
| + | $$ | ||
| − | If | + | If $ F $ |
| + | is absolutely continuous on $ [ 0, 2 \pi ] $, | ||
| + | then (*) is the Fourier series of the function $ F ^ { \prime } $. | ||
| + | In complex form the series (*) is | ||
| − | + | $$ | |
| + | dF ( x) \sim \ | ||
| + | \sum _ {n = - \infty } ^ { {+ } \infty } | ||
| + | c _ {n} e ^ {inx} , | ||
| + | $$ | ||
where | where | ||
| − | + | $$ | |
| + | c _ {n} = \ | ||
| + | { | ||
| + | \frac{1}{2 \pi } | ||
| + | } | ||
| + | \int\limits _ { 0 } ^ { {2 } \pi } | ||
| + | e ^ {-} inx dF ( x). | ||
| + | $$ | ||
Moreover, | Moreover, | ||
| − | + | $$ | |
| + | F ( x) - c _ {0} x \sim \ | ||
| + | C _ {0} + \sum _ { | ||
| + | \begin{array}{c} | ||
| + | n = - \infty \\ | ||
| + | n \neq 0 | ||
| + | \end{array} | ||
| + | } ^ \infty | ||
| + | |||
| + | \frac{c _ {n} }{in } | ||
| + | |||
| + | e ^ {inx} , | ||
| + | $$ | ||
| − | and | + | and $ \{ c _ {n} \} $ |
| + | will be bounded. If $ c _ {n} \rightarrow 0 $, | ||
| + | then $ F $ | ||
| + | is continuous on $ [ 0, 2 \pi ] $. | ||
| + | There is a continuous function $ F $ | ||
| + | for which $ c _ {n} $ | ||
| + | does not tend to $ 0 $ | ||
| + | as $ n \rightarrow + \infty $. | ||
| + | The series (*) is summable to $ F ^ { \prime } ( x) $ | ||
| + | by the Cesàro method $ ( C, r) $, | ||
| + | $ r > 0 $, | ||
| + | almost-everywhere on $ [ 0, 2 \pi ] $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1''' , Cambridge Univ. Press (1988)</TD></TR></table> | ||
Latest revision as of 19:39, 5 June 2020
A series
$$ { \frac{a _ {0} }{2} } + \sum _ {n = 1 } ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx), $$
where for $ n = 0, 1 \dots $
$$ a _ {n} = \ { \frac{1} \pi } \int\limits _ { 0 } ^ { {2 } \pi } \cos nx dF ( x),\ \ b _ {n} = \ { \frac{1} \pi } \int\limits _ { 0 } ^ { {2 } \pi } \sin nx dF ( x) $$
(the integrals are taken in the sense of Stieltjes). Here $ F $ is a function of bounded variation on $ [ 0, 2 \pi ] $. Alternatively one could write
$$ \tag{* } dF ( x) \sim \ { \frac{a _ {0} }{2} } + \sum _ {n = 1 } ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx). $$
If $ F $ is absolutely continuous on $ [ 0, 2 \pi ] $, then (*) is the Fourier series of the function $ F ^ { \prime } $. In complex form the series (*) is
$$ dF ( x) \sim \ \sum _ {n = - \infty } ^ { {+ } \infty } c _ {n} e ^ {inx} , $$
where
$$ c _ {n} = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } e ^ {-} inx dF ( x). $$
Moreover,
$$ F ( x) - c _ {0} x \sim \ C _ {0} + \sum _ { \begin{array}{c} n = - \infty \\ n \neq 0 \end{array} } ^ \infty \frac{c _ {n} }{in } e ^ {inx} , $$
and $ \{ c _ {n} \} $ will be bounded. If $ c _ {n} \rightarrow 0 $, then $ F $ is continuous on $ [ 0, 2 \pi ] $. There is a continuous function $ F $ for which $ c _ {n} $ does not tend to $ 0 $ as $ n \rightarrow + \infty $. The series (*) is summable to $ F ^ { \prime } ( x) $ by the Cesàro method $ ( C, r) $, $ r > 0 $, almost-everywhere on $ [ 0, 2 \pi ] $.
References
| [1] | A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988) |
Fourier-Stieltjes series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fourier-Stieltjes_series&oldid=16120