Namespaces
Variants
Actions

Difference between revisions of "Folium of Descartes"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A plane algebraic curve of order three which is given in Cartesian coordinates by the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407501.png" />; the parametric equations are
+
<!--
 +
f0407501.png
 +
$#A+1 = 10 n = 0
 +
$#C+1 = 10 : ~/encyclopedia/old_files/data/F040/F.0400750 Folium of Descartes
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407502.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407503.png" /> is the tangent of the angle between the radius vector of the curve and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407504.png" />-axis. The folium of Descartes is symmetric about the axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407505.png" /> (see Fig.). The tangent lines are parallel to the coordinate axes at the points with coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407506.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407507.png" />. The coordinate origin is a nodal point with the coordinate axes as tangent lines. The asymptote is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407508.png" />. The surface area enclosed between the curve and the asymptote is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f0407509.png" />. The surface area of the loop is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040750/f04075010.png" />. Named after R. Descartes who was the first to study it in 1638.
+
A plane algebraic curve of order three which is given in Cartesian coordinates by the equation  $  x  ^ {3} + y  ^ {3} - 3axy = 0 $;
 +
the parametric equations are
 +
 
 +
$$
 +
x =  
 +
\frac{3at}{1 + t  ^ {3} }
 +
,\  y =  
 +
\frac{3a t  ^ {2} }{1 + t  ^ {3} }
 +
,
 +
$$
 +
 
 +
where  $  t $
 +
is the tangent of the angle between the radius vector of the curve and the $  x $-
 +
axis. The folium of Descartes is symmetric about the axis $  y= x $(
 +
see Fig.). The tangent lines are parallel to the coordinate axes at the points with coordinates $  ( a 2  ^ {1/3} , a 4  ^ {1/3} ) $
 +
and $  ( a 4  ^ {1/3} , a 2  ^ {1/3} ) $.  
 +
The coordinate origin is a nodal point with the coordinate axes as tangent lines. The asymptote is given by $  y= - x- a $.  
 +
The surface area enclosed between the curve and the asymptote is $  S = 3a  ^ {2} /2 $.  
 +
The surface area of the loop is $  S = 3a  ^ {2} /2 $.  
 +
Named after R. Descartes who was the first to study it in 1638.
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/f040750a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/f040750a.gif" />
Line 11: Line 38:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.S. Smogorzhevskii,  E.S. Stolova,  "Handbook of the theory of planar curves of the third order" , Moscow  (1961)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Savelov,  "Planar curves" , Moscow  (1960)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.S. Smogorzhevskii,  E.S. Stolova,  "Handbook of the theory of planar curves of the third order" , Moscow  (1961)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.D. Lawrence,  "A catalog of special plane curves" , Dover, reprint  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.D. Lawrence,  "A catalog of special plane curves" , Dover, reprint  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Fladt,  "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell.  (1962)</TD></TR></table>

Revision as of 19:39, 5 June 2020


A plane algebraic curve of order three which is given in Cartesian coordinates by the equation $ x ^ {3} + y ^ {3} - 3axy = 0 $; the parametric equations are

$$ x = \frac{3at}{1 + t ^ {3} } ,\ y = \frac{3a t ^ {2} }{1 + t ^ {3} } , $$

where $ t $ is the tangent of the angle between the radius vector of the curve and the $ x $- axis. The folium of Descartes is symmetric about the axis $ y= x $( see Fig.). The tangent lines are parallel to the coordinate axes at the points with coordinates $ ( a 2 ^ {1/3} , a 4 ^ {1/3} ) $ and $ ( a 4 ^ {1/3} , a 2 ^ {1/3} ) $. The coordinate origin is a nodal point with the coordinate axes as tangent lines. The asymptote is given by $ y= - x- a $. The surface area enclosed between the curve and the asymptote is $ S = 3a ^ {2} /2 $. The surface area of the loop is $ S = 3a ^ {2} /2 $. Named after R. Descartes who was the first to study it in 1638.

Figure: f040750a

References

[1] A.A. Savelov, "Planar curves" , Moscow (1960) (In Russian)
[2] A.S. Smogorzhevskii, E.S. Stolova, "Handbook of the theory of planar curves of the third order" , Moscow (1961) (In Russian)

Comments

References

[a1] J.D. Lawrence, "A catalog of special plane curves" , Dover, reprint (1972)
[a2] K. Fladt, "Analytische Geometrie spezieller ebener Kurven" , Akad. Verlagsgesell. (1962)
How to Cite This Entry:
Folium of Descartes. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Folium_of_Descartes&oldid=13430
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article