|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A lexical function characterizing the behaviour of a finite automaton (cf. [[Automaton, finite|Automaton, finite]]). (A function is called lexical if its domain of definition and range of values are sets of words or superwords.) | + | <!-- |
| + | f0403401.png |
| + | $#A+1 = 88 n = 0 |
| + | $#C+1 = 88 : ~/encyclopedia/old_files/data/F040/F.0400340 Finitely\AAhdetermined function |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403401.png" /> is an alphabet. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403402.png" /> denote the set of all words, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403403.png" /> the set of all words or the set of all superwords over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403404.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403405.png" /> mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403406.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403407.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403408.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f0403409.png" /> are any finite alphabets, is called a determined function if it satisfies the following two conditions:
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | 1) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034011.png" />, the length of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034012.png" /> is equal to the length of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034013.png" />; and
| + | A lexical function characterizing the behaviour of a finite automaton (cf. [[Automaton, finite|Automaton, finite]]). (A function is called ''lexical'' if its domain of definition and range of values are sets of [[word]]s or [[superword]]s.) |
| | | |
− | 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034014.png" /> is a word of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034018.png" />, then the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034020.png" /> have the same beginnings of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034021.png" />.
| + | Suppose that $ A $ |
| + | is an alphabet. Let $ A ^ {*} $ |
| + | denote the set of all words, and $ A ^ {0} $ |
| + | the set of all words or the set of all superwords over $ A $. |
| + | A function $ f $ |
| + | mapping $ A ^ {0} $ |
| + | into $ B ^ {0} $, |
| + | where $ A $ |
| + | and $ B $ |
| + | are any finite alphabets, is called a determined function if it satisfies the following two conditions: |
| | | |
− | If a determined function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034022.png" /> is defined on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034023.png" /> of all superwords over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034024.png" /> then, by conditions 1) and 2), it can be extended to the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034025.png" />: For an arbitrary word <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034026.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034027.png" />, the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034028.png" /> coincides with the beginning of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034029.png" /> of the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034030.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034031.png" /> is an arbitrary superword over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034032.png" />. Thus, every determined function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034033.png" /> satisfies the condition:
| + | 1) for any $ \alpha $ |
| + | in $ A ^ {0} $, |
| + | the length of $ f ( \alpha) $ |
| + | is equal to the length of $ \alpha $; |
| + | and |
| | | |
− | 3) for any word <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034034.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034035.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034036.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034037.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034039.png" /> is a determined function on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034040.png" />, uniquely determined by the word <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034041.png" />.
| + | 2) if $ \alpha $ |
| + | is a word of length $ l $ |
| + | and $ \alpha _ {1} = \alpha \alpha ^ \prime $, |
| + | $ \alpha _ {2} = \alpha \alpha ^ {\prime\prime} $, |
| + | where $ \alpha ^ \prime , \alpha ^ {\prime\prime} \in A ^ {0} $, |
| + | then the values $ f ( \alpha _ {1} ) $ |
| + | and $ f ( \alpha _ {2} ) $ |
| + | have the same beginnings of length $ l $. |
| | | |
− | The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034042.png" /> is called the remainder function for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034043.png" />. Condition 3) implies that every determined function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034044.png" /> defines an equivalence relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034045.png" /> on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034046.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034047.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034048.png" />. The rank of this relation, or, which comes to the same thing, the maximum number of pairwise-distinct remainder functions, is called the weight of the determined function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034049.png" />. If the weight of a determined function is finite, then the function is called a finitely-determined function. This concept can also be extended to functions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034050.png" /> variables, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034051.png" />, if a collection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034052.png" /> words of the same length (or superwords) over alphabets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034053.png" />, respectively, is considered as a word (superword) over the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034054.png" /> — the Cartesian product of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034055.png" />. Thus, one can consider finitely-determined functions with several outcomes, that is, whose values are sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034056.png" /> words or superwords over alphabets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034057.png" />, respectively. The class of all finitely-determined functions coincides with the class of functions computable by finite automata. Hence the same means may be used to represent finitely-determined functions as are used to represent finite automata, e.g. canonical equations (see [[Automaton, finite|Automaton, finite]]; [[Automata, methods of specification of|Automata, methods of specification of]]). This implies, in particular, that the class of finitely-determined functions with coincident alphabets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034058.png" /> is closed under superposition. The minimal (in number of states) automaton <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034059.png" /> computing a finitely-determined function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034060.png" /> of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034061.png" /> contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034062.png" /> states and can be constructed as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034063.png" /> be arbitrary representatives of the equivalence classes under the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034064.png" />. To each class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034066.png" />, corresponds a state <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034067.png" /> of the automaton <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034068.png" />. The transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034069.png" /> and the output function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034070.png" /> are defined by the following conditions: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034071.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034072.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034073.png" />, the state <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034074.png" /> corresponds to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034075.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034076.png" />. The initial state is taken as that corresponding to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034077.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034078.png" /> is the empty word.
| + | If a determined function $ f $ |
| + | is defined on the set $ A ^ \infty $ |
| + | of all superwords over $ A $ |
| + | then, by conditions 1) and 2), it can be extended to the set $ A ^ {*} $: |
| + | For an arbitrary word $ \alpha $ |
| + | of length $ l $, |
| + | the value $ f ( \alpha ) $ |
| + | coincides with the beginning of length $ l $ |
| + | of the value $ f ( \alpha \beta ) $, |
| + | where $ \beta $ |
| + | is an arbitrary superword over $ A $. |
| + | Thus, every determined function $ f $ |
| + | satisfies the condition: |
| | | |
− | ====References====
| + | 3) for any word $ \alpha $ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.C. Kleene, "Representation of events in nerve nets and finite automata" , ''Automata studies'' , '''34''' , Princeton Univ. Press (1956) pp. 3–41</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.V. Yablonskii, "Introduction to discrete mathematics" , Moscow (1986) (In Russian)</TD></TR></table>
| + | in $ A ^ {*} $ |
| + | and any $ \beta $ |
| + | in $ A ^ {0} $ |
| + | one has $ f ( \alpha \beta ) = f ( \alpha ) f _ \alpha ( \beta ) $, |
| + | where $ f _ \alpha $ |
| + | is a determined function on the set $ A ^ {0} $, |
| + | uniquely determined by the word $ \alpha $. |
| | | |
| + | The function $ f _ \alpha $ |
| + | is called the remainder function for $ f $. |
| + | Condition 3) implies that every determined function $ f $ |
| + | defines an equivalence relation $ R $ |
| + | on the set $ A ^ {*} $: |
| + | $ \alpha R \beta $ |
| + | if and only if $ f _ \alpha = f _ \beta $. |
| + | The rank of this relation, or, which comes to the same thing, the maximum number of pairwise-distinct remainder functions, is called the weight of the determined function $ f $. |
| + | If the weight of a determined function is finite, then the function is called a finitely-determined function. This concept can also be extended to functions of $ m $ |
| + | variables, where $ m \geq 2 $, |
| + | if a collection of $ m $ |
| + | words of the same length (or superwords) over alphabets $ A _ {1} \dots A _ {m} $, |
| + | respectively, is considered as a word (superword) over the alphabet $ A _ {1} \times \dots \times A _ {m} $— |
| + | the Cartesian product of $ A _ {1} \dots A _ {m} $. |
| + | Thus, one can consider finitely-determined functions with several outcomes, that is, whose values are sets of $ k $ |
| + | words or superwords over alphabets $ B _ {1} \dots B _ {k} $, |
| + | respectively. The class of all finitely-determined functions coincides with the class of functions computable by finite automata. Hence the same means may be used to represent finitely-determined functions as are used to represent finite automata, e.g. canonical equations (see [[Automaton, finite|Automaton, finite]]; [[Automata, methods of specification of|Automata, methods of specification of]]). This implies, in particular, that the class of finitely-determined functions with coincident alphabets $ A _ {1} = \dots = A _ {m} = B $ |
| + | is closed under superposition. The minimal (in number of states) automaton $ \mathfrak A ( A, S, B, \phi , \psi , s _ {1} ) $ |
| + | computing a finitely-determined function $ f $ |
| + | of weight $ n $ |
| + | contains $ n $ |
| + | states and can be constructed as follows. Let $ \alpha _ {1} \dots \alpha _ {n} $ |
| + | be arbitrary representatives of the equivalence classes under the relation $ R $. |
| + | To each class $ R ( \alpha _ {i} ) $, |
| + | $ i = 1 \dots n $, |
| + | corresponds a state $ s _ {i} $ |
| + | of the automaton $ \mathfrak A $. |
| + | The transition function $ \phi $ |
| + | and the output function $ \psi $ |
| + | are defined by the following conditions: If $ a \in A $ |
| + | and $ 1 \leq i \leq n $, |
| + | then $ \phi ( s _ {i} , a) = s _ {j} $, |
| + | the state $ s _ {j} $ |
| + | corresponds to the class $ R ( \alpha _ {i} a) $; |
| + | $ \psi ( s _ {i} , a) = f _ {\alpha _ {i} } ( a) $. |
| + | The initial state is taken as that corresponding to the class $ R ( \Lambda ) $, |
| + | where $ \Lambda $ |
| + | is the empty word. |
| | | |
| + | ====References==== |
| + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.C. Kleene, "Representation of events in nerve nets and finite automata" , ''Automata studies'' , '''34''' , Princeton Univ. Press (1956) pp. 3–41 {{MR|0077478}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.V. Yablonskii, "Introduction to discrete mathematics" , Moscow (1986) (In Russian) {{MR|0911107}} {{ZBL|}} </TD></TR></table> |
| | | |
| ====Comments==== | | ====Comments==== |
| (Finitely-) determined functions are also called (finite) sequential machine mappings or Mealy mappings. They are a special case of gsm-mappings, for which condition 1) above is not required. | | (Finitely-) determined functions are also called (finite) sequential machine mappings or Mealy mappings. They are a special case of gsm-mappings, for which condition 1) above is not required. |
| | | |
− | Instead of "remainder function" one also uses derivative. | + | Instead of "remainder function" one also uses derivative. |
| | | |
− | A rather different notion of finite determinacy of functions occurs in differential topology. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034079.png" /> be a smooth function taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034080.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034081.png" />. Roughly, a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034082.png" /> is finitely determined at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034083.png" /> if up to local diffeomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034084.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034085.png" /> it is uniquely determined near 0 by the terms of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034086.png" /> of its Taylor series at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034087.png" />; it is then said to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040340/f04034088.png" />-determined. The precise notions involve germs (cf. [[Germ|Germ]]) of functions and mappings. Cf. [[Singularities of differentiable mappings|Singularities of differentiable mappings]] for more details (in a more general setting) and for related notions such as stable germs of differentiable mappings, singularities of finite type, etc. | + | A rather different notion of finite determinacy of functions occurs in differential topology. Let $ f : \mathbf R ^ {n} \rightarrow \mathbf R $ |
| + | be a smooth function taking $ 0 \in \mathbf R ^ {n} $ |
| + | to $ 0 \in \mathbf R $. |
| + | Roughly, a function $ f $ |
| + | is finitely determined at $ 0 $ |
| + | if up to local diffeomorphisms of $ ( \mathbf R ^ {n} , 0 ) $ |
| + | and $ ( \mathbf R , 0 ) $ |
| + | it is uniquely determined near 0 by the terms of order $ \leq k $ |
| + | of its Taylor series at $ 0 \in \mathbf R ^ {n} $; |
| + | it is then said to be $ k $- |
| + | determined. The precise notions involve germs (cf. [[Germ|Germ]]) of functions and mappings. Cf. [[Singularities of differentiable mappings|Singularities of differentiable mappings]] for more details (in a more general setting) and for related notions such as stable germs of differentiable mappings, singularities of finite type, etc. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Ginsburg, "The mathematical theory of context-free languages" , McGraw-Hill (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.E. Hopcroft, J.D. Ulman, "Introduction to automata theory, languages and computation" , Addison-Wesley (1979)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Ginsburg, "The mathematical theory of context-free languages" , McGraw-Hill (1965) {{MR|0211815}} {{ZBL|0195.02301}} {{ZBL|0184.28401}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.E. Hopcroft, J.D. Ulman, "Introduction to automata theory, languages and computation" , Addison-Wesley (1979) {{MR|0645539}} {{ZBL|0426.68001}} </TD></TR></table> |
A lexical function characterizing the behaviour of a finite automaton (cf. Automaton, finite). (A function is called lexical if its domain of definition and range of values are sets of words or superwords.)
Suppose that $ A $
is an alphabet. Let $ A ^ {*} $
denote the set of all words, and $ A ^ {0} $
the set of all words or the set of all superwords over $ A $.
A function $ f $
mapping $ A ^ {0} $
into $ B ^ {0} $,
where $ A $
and $ B $
are any finite alphabets, is called a determined function if it satisfies the following two conditions:
1) for any $ \alpha $
in $ A ^ {0} $,
the length of $ f ( \alpha) $
is equal to the length of $ \alpha $;
and
2) if $ \alpha $
is a word of length $ l $
and $ \alpha _ {1} = \alpha \alpha ^ \prime $,
$ \alpha _ {2} = \alpha \alpha ^ {\prime\prime} $,
where $ \alpha ^ \prime , \alpha ^ {\prime\prime} \in A ^ {0} $,
then the values $ f ( \alpha _ {1} ) $
and $ f ( \alpha _ {2} ) $
have the same beginnings of length $ l $.
If a determined function $ f $
is defined on the set $ A ^ \infty $
of all superwords over $ A $
then, by conditions 1) and 2), it can be extended to the set $ A ^ {*} $:
For an arbitrary word $ \alpha $
of length $ l $,
the value $ f ( \alpha ) $
coincides with the beginning of length $ l $
of the value $ f ( \alpha \beta ) $,
where $ \beta $
is an arbitrary superword over $ A $.
Thus, every determined function $ f $
satisfies the condition:
3) for any word $ \alpha $
in $ A ^ {*} $
and any $ \beta $
in $ A ^ {0} $
one has $ f ( \alpha \beta ) = f ( \alpha ) f _ \alpha ( \beta ) $,
where $ f _ \alpha $
is a determined function on the set $ A ^ {0} $,
uniquely determined by the word $ \alpha $.
The function $ f _ \alpha $
is called the remainder function for $ f $.
Condition 3) implies that every determined function $ f $
defines an equivalence relation $ R $
on the set $ A ^ {*} $:
$ \alpha R \beta $
if and only if $ f _ \alpha = f _ \beta $.
The rank of this relation, or, which comes to the same thing, the maximum number of pairwise-distinct remainder functions, is called the weight of the determined function $ f $.
If the weight of a determined function is finite, then the function is called a finitely-determined function. This concept can also be extended to functions of $ m $
variables, where $ m \geq 2 $,
if a collection of $ m $
words of the same length (or superwords) over alphabets $ A _ {1} \dots A _ {m} $,
respectively, is considered as a word (superword) over the alphabet $ A _ {1} \times \dots \times A _ {m} $—
the Cartesian product of $ A _ {1} \dots A _ {m} $.
Thus, one can consider finitely-determined functions with several outcomes, that is, whose values are sets of $ k $
words or superwords over alphabets $ B _ {1} \dots B _ {k} $,
respectively. The class of all finitely-determined functions coincides with the class of functions computable by finite automata. Hence the same means may be used to represent finitely-determined functions as are used to represent finite automata, e.g. canonical equations (see Automaton, finite; Automata, methods of specification of). This implies, in particular, that the class of finitely-determined functions with coincident alphabets $ A _ {1} = \dots = A _ {m} = B $
is closed under superposition. The minimal (in number of states) automaton $ \mathfrak A ( A, S, B, \phi , \psi , s _ {1} ) $
computing a finitely-determined function $ f $
of weight $ n $
contains $ n $
states and can be constructed as follows. Let $ \alpha _ {1} \dots \alpha _ {n} $
be arbitrary representatives of the equivalence classes under the relation $ R $.
To each class $ R ( \alpha _ {i} ) $,
$ i = 1 \dots n $,
corresponds a state $ s _ {i} $
of the automaton $ \mathfrak A $.
The transition function $ \phi $
and the output function $ \psi $
are defined by the following conditions: If $ a \in A $
and $ 1 \leq i \leq n $,
then $ \phi ( s _ {i} , a) = s _ {j} $,
the state $ s _ {j} $
corresponds to the class $ R ( \alpha _ {i} a) $;
$ \psi ( s _ {i} , a) = f _ {\alpha _ {i} } ( a) $.
The initial state is taken as that corresponding to the class $ R ( \Lambda ) $,
where $ \Lambda $
is the empty word.
References
[1] | S.C. Kleene, "Representation of events in nerve nets and finite automata" , Automata studies , 34 , Princeton Univ. Press (1956) pp. 3–41 MR0077478 |
[2] | S.V. Yablonskii, "Introduction to discrete mathematics" , Moscow (1986) (In Russian) MR0911107 |
(Finitely-) determined functions are also called (finite) sequential machine mappings or Mealy mappings. They are a special case of gsm-mappings, for which condition 1) above is not required.
Instead of "remainder function" one also uses derivative.
A rather different notion of finite determinacy of functions occurs in differential topology. Let $ f : \mathbf R ^ {n} \rightarrow \mathbf R $
be a smooth function taking $ 0 \in \mathbf R ^ {n} $
to $ 0 \in \mathbf R $.
Roughly, a function $ f $
is finitely determined at $ 0 $
if up to local diffeomorphisms of $ ( \mathbf R ^ {n} , 0 ) $
and $ ( \mathbf R , 0 ) $
it is uniquely determined near 0 by the terms of order $ \leq k $
of its Taylor series at $ 0 \in \mathbf R ^ {n} $;
it is then said to be $ k $-
determined. The precise notions involve germs (cf. Germ) of functions and mappings. Cf. Singularities of differentiable mappings for more details (in a more general setting) and for related notions such as stable germs of differentiable mappings, singularities of finite type, etc.
References