|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403301.png" /> such that the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403302.png" /> of points in the pre-image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403303.png" /> of every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403304.png" /> is finite. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403305.png" /> is the same for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403306.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403307.png" /> is said to be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f0403309.png" />-to-one mapping.
| + | <!-- |
| + | f0403301.png |
| + | $#A+1 = 50 n = 0 |
| + | $#C+1 = 50 : ~/encyclopedia/old_files/data/F040/F.0400330 Finite\AAhto\AAhone mapping |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | In the differentiable case, the concept of a finite-to-one mapping corresponds to that of a finite mapping. A differentiable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033010.png" /> of differentiable manifolds is said to be finite at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033011.png" /> if the dimension of the [[Local ring|local ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033013.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033014.png" /> is finite. All mappings of this sort are finite-to-one mappings on compact subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033015.png" />; moreover, there exists an open neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033016.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033017.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033018.png" /> consists of a single point. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033019.png" /> measures the multiplicity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033020.png" /> as a root of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033021.png" />; there exists a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033023.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033024.png" /> has at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033025.png" /> points for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033026.png" /> sufficiently close to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033027.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033028.png" />, the finite mappings form a [[Generic set|generic set]] in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033029.png" />; moreover, the set of non-finite mappings has infinite codimension in that space (Tougeron's theorem).
| + | A mapping $ f: X \rightarrow Y $ |
| + | such that the number $ n _ {y} $ |
| + | of points in the pre-image $ f ^ { - 1 } y $ |
| + | of every point $ y \in Y $ |
| + | is finite. If $ n _ {y} = n $ |
| + | is the same for all $ y $, |
| + | $ f $ |
| + | is said to be an $ n $- |
| + | to-one mapping. |
| | | |
− | ====References====
| + | In the differentiable case, the concept of a finite-to-one mapping corresponds to that of a finite mapping. A differentiable mapping $ f: X \rightarrow Y $ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973)</TD></TR></table>
| + | of differentiable manifolds is said to be finite at a point $ x \in X $ |
| + | if the dimension of the [[Local ring|local ring]] $ R _ {f} ( x) $ |
| + | of $ f $ |
| + | at $ x $ |
| + | is finite. All mappings of this sort are finite-to-one mappings on compact subsets of $ X $; |
| + | moreover, there exists an open neighbourhood $ U $ |
| + | of $ x $ |
| + | such that $ f ^ { - 1 } ( f ( x)) \cap U $ |
| + | consists of a single point. The number $ k = \mathop{\rm dim} R _ {f} ( x) $ |
| + | measures the multiplicity of $ x $ |
| + | as a root of the equation $ f( y) = x $; |
| + | there exists a neighbourhood $ V $ |
| + | of $ x $ |
| + | such that $ f ^ { - 1 } ( y) \cap V $ |
| + | has at most $ k $ |
| + | points for every $ y $ |
| + | sufficiently close to $ x $. |
| | | |
| + | If $ \mathop{\rm dim} X \leq \mathop{\rm dim} Y $, |
| + | the finite mappings form a [[Generic set|generic set]] in the space $ C ^ \infty ( X, Y) $; |
| + | moreover, the set of non-finite mappings has infinite codimension in that space (Tougeron's theorem). |
| | | |
| + | ====References==== |
| + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) {{MR|785749}} {{ZBL|0568.54001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) {{MR|0341518}} {{ZBL|0294.58004}} </TD></TR></table> |
| | | |
| ====Comments==== | | ====Comments==== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033030.png" /> be a mapping of differentiable manifolds. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033031.png" /> let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033032.png" /> denote the ring of germs of smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033033.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033034.png" />. This is a local ring with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033035.png" /> consisting of all germs vanishing at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033037.png" />, then by pullback, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033038.png" /> induces a ring homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033039.png" />. The local ring of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033040.png" /> is now defined as the quotient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033041.png" />. | + | Let $ f: X \rightarrow Y $ |
| + | be a mapping of differentiable manifolds. For $ x \in X $ |
| + | let $ C _ {x} ^ \infty $ |
| + | denote the ring of germs of smooth functions $ X \rightarrow \mathbf R $ |
| + | at $ x $. |
| + | This is a local ring with maximal ideal $ \mathfrak m _ {x} $ |
| + | consisting of all germs vanishing at $ x $. |
| + | If $ y = f( x) $, |
| + | then by pullback, $ f $ |
| + | induces a ring homomorphism $ f ^ { * } : C _ {x} ^ \infty \rightarrow C _ {y} ^ \infty $. |
| + | The local ring of the mapping $ f $ |
| + | is now defined as the quotient ring $ R _ {f} ( x) = C _ {x} ^ \infty / C _ {x} ^ \infty f ^ {*} \mathfrak m _ {y} $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033042.png" /> are germs of stable mappings then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033044.png" /> are equivalent if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033046.png" /> are isomorphic as rings (Mather's theorem). Here equivalence of germs of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033047.png" /> means that there exist germs of diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033049.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033050.png" /> (near <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040330/f04033051.png" />). | + | If $ f , g : ( X , x ) \rightarrow ( Y , y ) $ |
| + | are germs of stable mappings then $ f $ |
| + | and $ g $ |
| + | are equivalent if and only if $ R _ {f} ( x) $ |
| + | and $ R _ {g} ( x) $ |
| + | are isomorphic as rings (Mather's theorem). Here equivalence of germs of mappings $ f , g $ |
| + | means that there exist germs of diffeomorphisms $ h: ( X , x ) \rightarrow ( X , x ) $ |
| + | and $ k : ( Y , y ) \rightarrow ( Y , y ) $ |
| + | such that $ g = k f h ^ {-} 1 $( |
| + | near $ x $). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , '''1''' , Birkhäuser (1985) (Translated from Russian) {{MR|777682}} {{ZBL|0554.58001}} </TD></TR></table> |
A mapping $ f: X \rightarrow Y $
such that the number $ n _ {y} $
of points in the pre-image $ f ^ { - 1 } y $
of every point $ y \in Y $
is finite. If $ n _ {y} = n $
is the same for all $ y $,
$ f $
is said to be an $ n $-
to-one mapping.
In the differentiable case, the concept of a finite-to-one mapping corresponds to that of a finite mapping. A differentiable mapping $ f: X \rightarrow Y $
of differentiable manifolds is said to be finite at a point $ x \in X $
if the dimension of the local ring $ R _ {f} ( x) $
of $ f $
at $ x $
is finite. All mappings of this sort are finite-to-one mappings on compact subsets of $ X $;
moreover, there exists an open neighbourhood $ U $
of $ x $
such that $ f ^ { - 1 } ( f ( x)) \cap U $
consists of a single point. The number $ k = \mathop{\rm dim} R _ {f} ( x) $
measures the multiplicity of $ x $
as a root of the equation $ f( y) = x $;
there exists a neighbourhood $ V $
of $ x $
such that $ f ^ { - 1 } ( y) \cap V $
has at most $ k $
points for every $ y $
sufficiently close to $ x $.
If $ \mathop{\rm dim} X \leq \mathop{\rm dim} Y $,
the finite mappings form a generic set in the space $ C ^ \infty ( X, Y) $;
moreover, the set of non-finite mappings has infinite codimension in that space (Tougeron's theorem).
References
[1] | A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) (Translated from Russian) MR785749 Zbl 0568.54001 |
[2] | M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) MR0341518 Zbl 0294.58004 |
Let $ f: X \rightarrow Y $
be a mapping of differentiable manifolds. For $ x \in X $
let $ C _ {x} ^ \infty $
denote the ring of germs of smooth functions $ X \rightarrow \mathbf R $
at $ x $.
This is a local ring with maximal ideal $ \mathfrak m _ {x} $
consisting of all germs vanishing at $ x $.
If $ y = f( x) $,
then by pullback, $ f $
induces a ring homomorphism $ f ^ { * } : C _ {x} ^ \infty \rightarrow C _ {y} ^ \infty $.
The local ring of the mapping $ f $
is now defined as the quotient ring $ R _ {f} ( x) = C _ {x} ^ \infty / C _ {x} ^ \infty f ^ {*} \mathfrak m _ {y} $.
If $ f , g : ( X , x ) \rightarrow ( Y , y ) $
are germs of stable mappings then $ f $
and $ g $
are equivalent if and only if $ R _ {f} ( x) $
and $ R _ {g} ( x) $
are isomorphic as rings (Mather's theorem). Here equivalence of germs of mappings $ f , g $
means that there exist germs of diffeomorphisms $ h: ( X , x ) \rightarrow ( X , x ) $
and $ k : ( Y , y ) \rightarrow ( Y , y ) $
such that $ g = k f h ^ {-} 1 $(
near $ x $).
References
[a1] | V.I. Arnol'd, S.M. [S.M. Khusein-Zade] Gusein-Zade, A.N. Varchenko, "Singularities of differentiable maps" , 1 , Birkhäuser (1985) (Translated from Russian) MR777682 Zbl 0554.58001 |