Difference between revisions of "Feynman measure"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | f0384801.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/F038/F.0308480 Feynman measure | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A complex [[Pre-measure|pre-measure]] defined on cylindrical sets in the space of functions $ x ( t) $, | |
+ | $ 0 \leq t \leq T $, | ||
+ | $ T > 0 $, | ||
+ | with values in $ \mathbf R ^ {n} $, | ||
+ | $ n = 1, 2 \dots $ | ||
+ | by the formula | ||
− | + | $$ \tag{1 } | |
+ | \mu _ {x, T } | ||
+ | \{ B _ {\tau _ {1} \dots \tau _ {k} , x } ^ {A} \} = \ | ||
+ | \prod _ {j = 1 } ^ { k } | ||
+ | [ 2 \pi ia ( \tau _ {j} - \tau _ {j - 1 } )] ^ {-} n/2 \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \int\limits _ { A } \prod _ {j = 1 } ^ { {k } + 1 } \mathop{\rm exp} \left \{ - | ||
+ | { | ||
+ | \frac{1}{2ai } | ||
+ | } | ||
+ | \frac{( \xi _ {j} - \xi _ {j - 1 } ) ^ {2} }{( \tau _ {j} - \tau _ {j - 1 } ) } | ||
+ | \right | ||
+ | \} d \xi _ {1} \dots d \xi _ {k + 1 } . | ||
+ | $$ | ||
− | + | Here $ a > 0 $ | |
+ | is a parameter, $ 0 < \tau _ {1} < \dots < \tau _ {k} < T $, | ||
+ | and | ||
− | + | $$ | |
+ | B _ {\tau _ {1} \dots \tau _ {k} , x } ^ {A\ } = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \{ x ( t): x ( 0) = x = \xi _ {0} , \{ x ( | ||
+ | \tau _ {1} ) \dots x ( \tau _ {k} ), x ( T) \} \in A \} , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | x \in \mathbf R ^ {n} ,\ k = 0, 1 \dots | ||
+ | $$ | ||
+ | |||
+ | where $ A $ | ||
+ | is some Borel subset in $ ( \mathbf R ^ {n} ) ^ {( k + 1) } $. | ||
+ | Sometimes one also considers the so-called conditional Feynman measure $ \mu _ {x, y, T } $ | ||
+ | obtained from the measure (1) by restricting it to the set of trajectories with "end" at the point $ y \in \mathbf R ^ {n} $: | ||
+ | $ x ( T) = y $. | ||
+ | The measure $ \mu _ {x, T } $, | ||
+ | and also $ \mu _ {x, y, T } $, | ||
+ | was introduced by R.P. Feynman in connection with representing the semi-group $ \mathop{\rm exp} \{ itH \} $, | ||
+ | where $ H $ | ||
+ | is a Sturm–Liouville operator, in the form of a path integral — a [[Feynman integral|Feynman integral]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.P. Feynman, "Space-time approach to non-relativistic quantum mechanics" ''Rev. Modern Phys.'' , '''20''' (1948) pp. 367–387</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Yu.L. Daletskii, "Integration in function spaces" ''Progress in Mathematics'' , '''4''' (1969) pp. 87–132 ''Itogi Nauk. Mat. Anal. 1966'' (1967) pp. 83–124</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.A. Albeverio, R.J. Høegh-Krohn, "Mathematical theory of Feynman path integrals" , Springer (1976)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.P. Feynman, "Space-time approach to non-relativistic quantum mechanics" ''Rev. Modern Phys.'' , '''20''' (1948) pp. 367–387</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Yu.L. Daletskii, "Integration in function spaces" ''Progress in Mathematics'' , '''4''' (1969) pp. 87–132 ''Itogi Nauk. Mat. Anal. 1966'' (1967) pp. 83–124</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.A. Albeverio, R.J. Høegh-Krohn, "Mathematical theory of Feynman path integrals" , Springer (1976)</TD></TR></table> |
Latest revision as of 19:39, 5 June 2020
A complex pre-measure defined on cylindrical sets in the space of functions $ x ( t) $,
$ 0 \leq t \leq T $,
$ T > 0 $,
with values in $ \mathbf R ^ {n} $,
$ n = 1, 2 \dots $
by the formula
$$ \tag{1 } \mu _ {x, T } \{ B _ {\tau _ {1} \dots \tau _ {k} , x } ^ {A} \} = \ \prod _ {j = 1 } ^ { k } [ 2 \pi ia ( \tau _ {j} - \tau _ {j - 1 } )] ^ {-} n/2 \times $$
$$ \times \int\limits _ { A } \prod _ {j = 1 } ^ { {k } + 1 } \mathop{\rm exp} \left \{ - { \frac{1}{2ai } } \frac{( \xi _ {j} - \xi _ {j - 1 } ) ^ {2} }{( \tau _ {j} - \tau _ {j - 1 } ) } \right \} d \xi _ {1} \dots d \xi _ {k + 1 } . $$
Here $ a > 0 $ is a parameter, $ 0 < \tau _ {1} < \dots < \tau _ {k} < T $, and
$$ B _ {\tau _ {1} \dots \tau _ {k} , x } ^ {A\ } = $$
$$ = \ \{ x ( t): x ( 0) = x = \xi _ {0} , \{ x ( \tau _ {1} ) \dots x ( \tau _ {k} ), x ( T) \} \in A \} , $$
$$ x \in \mathbf R ^ {n} ,\ k = 0, 1 \dots $$
where $ A $ is some Borel subset in $ ( \mathbf R ^ {n} ) ^ {( k + 1) } $. Sometimes one also considers the so-called conditional Feynman measure $ \mu _ {x, y, T } $ obtained from the measure (1) by restricting it to the set of trajectories with "end" at the point $ y \in \mathbf R ^ {n} $: $ x ( T) = y $. The measure $ \mu _ {x, T } $, and also $ \mu _ {x, y, T } $, was introduced by R.P. Feynman in connection with representing the semi-group $ \mathop{\rm exp} \{ itH \} $, where $ H $ is a Sturm–Liouville operator, in the form of a path integral — a Feynman integral.
References
[1] | R.P. Feynman, "Space-time approach to non-relativistic quantum mechanics" Rev. Modern Phys. , 20 (1948) pp. 367–387 |
[2] | Yu.L. Daletskii, "Integration in function spaces" Progress in Mathematics , 4 (1969) pp. 87–132 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 83–124 |
[3] | S.A. Albeverio, R.J. Høegh-Krohn, "Mathematical theory of Feynman path integrals" , Springer (1976) |
Feynman measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Feynman_measure&oldid=14926