Difference between revisions of "Favard problem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | f0382901.png | ||
+ | $#A+1 = 9 n = 0 | ||
+ | $#C+1 = 9 : ~/encyclopedia/old_files/data/F038/F.0308290 Favard problem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The problem of calculating the least upper bound | The problem of calculating the least upper bound | ||
− | + | $$ \tag{* } | |
+ | \sup _ {\begin{array}{c} | ||
+ | {} \\ | ||
+ | f \in W ^ {r} MX | ||
+ | \end{array} | ||
+ | } \ | ||
+ | \inf _ {t _ {n} } \ | ||
+ | \| f ( x) - t _ {n} ( x) \| _ {X} , | ||
+ | $$ | ||
− | where the | + | where the $ t _ {n} ( x) $ |
+ | are trigonometric polynomials of order not exceeding $ n $, | ||
+ | $ W ^ {r} MX $ | ||
+ | is the class of periodic functions whose $ r $- | ||
+ | th derivative in the sense of Weyl (see [[Fractional integration and differentiation|Fractional integration and differentiation]]) satisfies the inequality $ \| f ^ { ( r) } \| _ {X} \leq M $, | ||
+ | and $ X = C [ 0, 2 \pi ] $. | ||
+ | The Favard problem was posed by J. Favard [[#References|[1]]]. Subsequently, broader classes of functions have been considered and a complete solution of the Favard problem for $ X = C, L $ | ||
+ | and arbitrary $ r > 0 $ | ||
+ | has been obtained as a corollary of more general results (see [[#References|[2]]], [[#References|[3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Favard, "Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynômes trigonométriques" ''Bull. Sci. Math.'' , '''61''' (1937) pp. 209–224</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.B. Stechkin, "On best approximation of certain classes of periodic functions by trigonometric functions" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''20''' : 5 (1956) pp. 643–648 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.K. Dzyadyk, "Best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotone functions" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' : 6 (1959) pp. 933–950 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Favard, "Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynômes trigonométriques" ''Bull. Sci. Math.'' , '''61''' (1937) pp. 209–224</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.B. Stechkin, "On best approximation of certain classes of periodic functions by trigonometric functions" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''20''' : 5 (1956) pp. 643–648 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.K. Dzyadyk, "Best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotone functions" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' : 6 (1959) pp. 933–950 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.P. Feinerman, D.J. Newman, "Polynomial approximation" , Williams & Wilkins pp. Chapt. IV.4</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.P. Feinerman, D.J. Newman, "Polynomial approximation" , Williams & Wilkins pp. Chapt. IV.4</TD></TR></table> |
Latest revision as of 19:38, 5 June 2020
The problem of calculating the least upper bound
$$ \tag{* } \sup _ {\begin{array}{c} {} \\ f \in W ^ {r} MX \end{array} } \ \inf _ {t _ {n} } \ \| f ( x) - t _ {n} ( x) \| _ {X} , $$
where the $ t _ {n} ( x) $ are trigonometric polynomials of order not exceeding $ n $, $ W ^ {r} MX $ is the class of periodic functions whose $ r $- th derivative in the sense of Weyl (see Fractional integration and differentiation) satisfies the inequality $ \| f ^ { ( r) } \| _ {X} \leq M $, and $ X = C [ 0, 2 \pi ] $. The Favard problem was posed by J. Favard [1]. Subsequently, broader classes of functions have been considered and a complete solution of the Favard problem for $ X = C, L $ and arbitrary $ r > 0 $ has been obtained as a corollary of more general results (see [2], [3]).
References
[1] | J. Favard, "Sur les meilleurs procédés d'approximation de certaines classes de fonctions par des polynômes trigonométriques" Bull. Sci. Math. , 61 (1937) pp. 209–224 |
[2] | S.B. Stechkin, "On best approximation of certain classes of periodic functions by trigonometric functions" Izv. Akad. Nauk SSSR Ser. Mat. , 20 : 5 (1956) pp. 643–648 (In Russian) |
[3] | V.K. Dzyadyk, "Best approximation on classes of periodic functions defined by kernels which are integrals of absolutely monotone functions" Izv. Akad. Nauk SSSR Ser. Mat. , 23 : 6 (1959) pp. 933–950 (In Russian) |
[4] | N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian) |
Comments
References
[a1] | R.P. Feinerman, D.J. Newman, "Polynomial approximation" , Williams & Wilkins pp. Chapt. IV.4 |
Favard problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Favard_problem&oldid=18812