Difference between revisions of "Fatou theorem (on Lebesgue integrals)"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | f0382601.png | ||
| + | $#A+1 = 13 n = 0 | ||
| + | $#C+1 = 13 : ~/encyclopedia/old_files/data/F038/F.0308260 Fatou theorem (on Lebesgue integrals) | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | It was first proved by P. Fatou [[#References|[1]]]. In the statement of it | + | A theorem on passing to the limit under a Lebesgue integral: If a sequence of measurable (real-valued) non-negative functions $ f _ {1} , f _ {2} \dots $ |
| + | converges almost-everywhere on a set $ E $ | ||
| + | to a function $ f $, | ||
| + | then | ||
| + | |||
| + | $$ | ||
| + | \int\limits _ { E } | ||
| + | f ( x) dx \leq \ | ||
| + | \lim\limits _ {n \rightarrow \infty } \inf \ | ||
| + | \int\limits _ { E } | ||
| + | f _ {n} ( x) dx. | ||
| + | $$ | ||
| + | |||
| + | It was first proved by P. Fatou [[#References|[1]]]. In the statement of it $ \lim\limits _ {n \rightarrow \infty } \inf $ | ||
| + | is often replaced by $ \sup _ {n} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Fatou, "Séries trigonométriques et séries de Taylor" ''Acta Math.'' , '''30''' (1906) pp. 335–400 {{MR|1555035}} {{ZBL|37.0283.01}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Theorie der Funktionen einer reellen Veränderlichen" , H. Deutsch , Frankfurt a.M. (1961) (Translated from Russian) {{MR|0640867}} {{MR|0409747}} {{MR|0259033}} {{MR|0063424}} {{ZBL|0097.26601}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Fatou, "Séries trigonométriques et séries de Taylor" ''Acta Math.'' , '''30''' (1906) pp. 335–400 {{MR|1555035}} {{ZBL|37.0283.01}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) {{MR|0167578}} {{ZBL|1196.28001}} {{ZBL|0017.30004}} {{ZBL|63.0183.05}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Theorie der Funktionen einer reellen Veränderlichen" , H. Deutsch , Frankfurt a.M. (1961) (Translated from Russian) {{MR|0640867}} {{MR|0409747}} {{MR|0259033}} {{MR|0063424}} {{ZBL|0097.26601}} </TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | This result is usually called Fatou's lemma. It holds in a more general form: If | + | This result is usually called Fatou's lemma. It holds in a more general form: If $ ( \mathfrak X , {\mathcal A} , \mu ) $ |
| + | is a [[Measure space|measure space]], $ f _ {n} : \mathfrak X \rightarrow [ 0 , \infty ] $ | ||
| + | is $ {\mathcal A} $- | ||
| + | measurable for $ n = 1 , 2 \dots $ | ||
| + | and $ f ( x) = \lim\limits _ {n \rightarrow \infty } \inf f _ {n} ( x) $ | ||
| + | for $ x \in \mathfrak X $, | ||
| + | then | ||
| − | + | $$ | |
| + | \int\limits f d \mu \leq \lim\limits | ||
| + | _ {n \rightarrow \infty } \inf \int\limits f _ {n} d \mu . | ||
| + | $$ | ||
It is not necessary that the sequence converges. | It is not necessary that the sequence converges. | ||
Latest revision as of 19:38, 5 June 2020
A theorem on passing to the limit under a Lebesgue integral: If a sequence of measurable (real-valued) non-negative functions $ f _ {1} , f _ {2} \dots $
converges almost-everywhere on a set $ E $
to a function $ f $,
then
$$ \int\limits _ { E } f ( x) dx \leq \ \lim\limits _ {n \rightarrow \infty } \inf \ \int\limits _ { E } f _ {n} ( x) dx. $$
It was first proved by P. Fatou [1]. In the statement of it $ \lim\limits _ {n \rightarrow \infty } \inf $ is often replaced by $ \sup _ {n} $.
References
| [1] | P. Fatou, "Séries trigonométriques et séries de Taylor" Acta Math. , 30 (1906) pp. 335–400 MR1555035 Zbl 37.0283.01 |
| [2] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) MR0167578 Zbl 1196.28001 Zbl 0017.30004 Zbl 63.0183.05 |
| [3] | I.P. Natanson, "Theorie der Funktionen einer reellen Veränderlichen" , H. Deutsch , Frankfurt a.M. (1961) (Translated from Russian) MR0640867 MR0409747 MR0259033 MR0063424 Zbl 0097.26601 |
Comments
This result is usually called Fatou's lemma. It holds in a more general form: If $ ( \mathfrak X , {\mathcal A} , \mu ) $ is a measure space, $ f _ {n} : \mathfrak X \rightarrow [ 0 , \infty ] $ is $ {\mathcal A} $- measurable for $ n = 1 , 2 \dots $ and $ f ( x) = \lim\limits _ {n \rightarrow \infty } \inf f _ {n} ( x) $ for $ x \in \mathfrak X $, then
$$ \int\limits f d \mu \leq \lim\limits _ {n \rightarrow \infty } \inf \int\limits f _ {n} d \mu . $$
It is not necessary that the sequence converges.
References
| [a1] | E. Hewitt, K.R. Stromberg, "Real and abstract analysis" , Springer (1965) MR0188387 Zbl 0137.03202 |
| [a2] | P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802 |
Fatou theorem (on Lebesgue integrals). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fatou_theorem_(on_Lebesgue_integrals)&oldid=28189