|
|
Line 1: |
Line 1: |
− | The associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356101.png" /> consisting of all morphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356102.png" /> into itself, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356103.png" /> is an object in some [[Additive category|additive category]]. The multiplication in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356104.png" /> is composition of morphisms, and addition is the addition of morphisms defined by the axioms of the additive category. The identity morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356105.png" /> is the unit element of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356106.png" />. An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356107.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356108.png" /> is invertible if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e0356109.png" /> is an automorphism of the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561010.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561012.png" /> are objects of an additive category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561013.png" />, then the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561014.png" /> has the natural structure of a right module over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561015.png" /> and of a left module over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561016.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561017.png" /> be a covariant (or contravariant) additive functor from an additive category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561018.png" /> into an additive category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561019.png" />. Then for any object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561020.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561021.png" /> the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561022.png" /> induces a natural homomorphism (or anti-homomorphism) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561023.png" />.
| + | <!-- |
| + | e0356101.png |
| + | $#A+1 = 63 n = 0 |
| + | $#C+1 = 63 : ~/encyclopedia/old_files/data/E035/E.0305610 Endomorphism ring |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561024.png" /> be the category of modules over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561025.png" />. For an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561026.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561027.png" /> the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561028.png" /> consists of all endomorphisms of the Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561029.png" /> that commute with multiplication by elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561030.png" />. The sum of two endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561032.png" /> is defined by the formula
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561033.png" /></td> </tr></table>
| + | The associative ring $ \mathop{\rm End} A = \mathop{\rm Hom} ( A , A ) $ |
| + | consisting of all morphisms of $ A $ |
| + | into itself, where $ A $ |
| + | is an object in some [[Additive category|additive category]]. The multiplication in $ \mathop{\rm End} A $ |
| + | is composition of morphisms, and addition is the addition of morphisms defined by the axioms of the additive category. The identity morphism $ 1 _ {A} $ |
| + | is the unit element of the ring $ \mathop{\rm End} A $. |
| + | An element $ \phi $ |
| + | in $ \mathop{\rm End} A $ |
| + | is invertible if and only if $ \phi $ |
| + | is an automorphism of the object $ A $. |
| + | If $ A $ |
| + | and $ B $ |
| + | are objects of an additive category $ C $, |
| + | then the group $ \mathop{\rm Hom} ( A , B ) $ |
| + | has the natural structure of a right module over $ \mathop{\rm End} A $ |
| + | and of a left module over $ \mathop{\rm End} B $. |
| + | Let $ T : C \rightarrow C _ {1} $ |
| + | be a covariant (or contravariant) additive functor from an additive category $ C $ |
| + | into an additive category $ C _ {1} $. |
| + | Then for any object $ A $ |
| + | in $ C $ |
| + | the functor $ T $ |
| + | induces a natural homomorphism (or anti-homomorphism) $ \mathop{\rm End} A \rightarrow \mathop{\rm End} T ( A) $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561034.png" /> is commutative, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561035.png" /> has the natural structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561036.png" />-algebra. Many properties of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561037.png" /> can be characterized in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561038.png" />. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561039.png" /> is an irreducible module if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561040.png" /> is a skew-field.
| + | Let $ C $ |
| + | be the category of modules over a ring $ R $. |
| + | For an $ R $- |
| + | module $ A $ |
| + | the ring $ \mathop{\rm End} A $ |
| + | consists of all endomorphisms of the Abelian group $ A $ |
| + | that commute with multiplication by elements of $ R $. |
| + | The sum of two endomorphism $ \phi $ |
| + | and $ \psi $ |
| + | is defined by the formula |
| | | |
− | An arbitrary homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561041.png" /> of an associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561042.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561043.png" /> is called a representation of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561044.png" /> (by endomorphisms of the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561045.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561046.png" /> has a unit element, then one imposes the additional condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561047.png" />. Any associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561048.png" /> has a faithful representation in the endomorphism ring of a certain Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561049.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561050.png" />, moreover, has a unit element, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561051.png" /> can be chosen as the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561052.png" /> on which the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561053.png" /> act by left multiplication. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561054.png" /> has no unit element and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561055.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561056.png" /> by adjoining a unit to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561057.png" /> externally, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561058.png" /> can be taken to be the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561059.png" />.
| + | $$ |
| + | ( \phi + \psi ) ( a) = \phi ( a) + |
| + | \psi ( a) ,\ a \in A . |
| + | $$ |
| | | |
− | In the case of an Abelian variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561060.png" /> one considers, apart from the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561061.png" />, which is a finitely-generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561062.png" />-module, the algebra of endomorphisms (algebra of complex multiplications) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035610/e03561063.png" />. | + | If $ R $ |
| + | is commutative, then $ \mathop{\rm End} A $ |
| + | has the natural structure of an $ R $- |
| + | algebra. Many properties of the module $ A $ |
| + | can be characterized in terms of $ \mathop{\rm End} A $. |
| + | For example, $ A $ |
| + | is an irreducible module if and only if $ \mathop{\rm End} A $ |
| + | is a skew-field. |
| + | |
| + | An arbitrary homomorphism $ \pi $ |
| + | of an associative ring $ K $ |
| + | into $ \mathop{\rm End} A $ |
| + | is called a representation of the ring $ K $( |
| + | by endomorphisms of the object $ A $). |
| + | If $ K $ |
| + | has a unit element, then one imposes the additional condition $ \pi ( 1) = 1 _ {A} $. |
| + | Any associative ring $ K $ |
| + | has a faithful representation in the endomorphism ring of a certain Abelian group $ A $. |
| + | If $ K $, |
| + | moreover, has a unit element, then $ A $ |
| + | can be chosen as the additive group of $ K $ |
| + | on which the elements of $ K $ |
| + | act by left multiplication. If $ K $ |
| + | has no unit element and $ K _ {1} $ |
| + | is obtained from $ K $ |
| + | by adjoining a unit to $ K $ |
| + | externally, then $ A $ |
| + | can be taken to be the additive group of $ K _ {1} $. |
| + | |
| + | In the case of an Abelian variety $ X $ |
| + | one considers, apart from the ring $ \mathop{\rm End} X $, |
| + | which is a finitely-generated $ \mathbf Z $- |
| + | module, the algebra of endomorphisms (algebra of complex multiplications) $ \mathop{\rm End} ^ {0} X = \mathbf Q \otimes _ {\mathbf Z } \mathop{\rm End} X $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1–2''' , Springer (1973–1976)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Abelian varieties" , Oxford Univ. Press (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.T. Markov, A.V. Mikhalev, L.A. Skornyakov, A.A. Tugaubaev, "Endomorphism rings of modules and lattices of submodules" ''J. Soviet Math.'' , '''31''' : 3 (1985) pp. 3005–3051 ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''21''' (1983) pp. 183–254</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1–2''' , Springer (1973–1976)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D. Mumford, "Abelian varieties" , Oxford Univ. Press (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.T. Markov, A.V. Mikhalev, L.A. Skornyakov, A.A. Tugaubaev, "Endomorphism rings of modules and lattices of submodules" ''J. Soviet Math.'' , '''31''' : 3 (1985) pp. 3005–3051 ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''21''' (1983) pp. 183–254</TD></TR></table> |
The associative ring $ \mathop{\rm End} A = \mathop{\rm Hom} ( A , A ) $
consisting of all morphisms of $ A $
into itself, where $ A $
is an object in some additive category. The multiplication in $ \mathop{\rm End} A $
is composition of morphisms, and addition is the addition of morphisms defined by the axioms of the additive category. The identity morphism $ 1 _ {A} $
is the unit element of the ring $ \mathop{\rm End} A $.
An element $ \phi $
in $ \mathop{\rm End} A $
is invertible if and only if $ \phi $
is an automorphism of the object $ A $.
If $ A $
and $ B $
are objects of an additive category $ C $,
then the group $ \mathop{\rm Hom} ( A , B ) $
has the natural structure of a right module over $ \mathop{\rm End} A $
and of a left module over $ \mathop{\rm End} B $.
Let $ T : C \rightarrow C _ {1} $
be a covariant (or contravariant) additive functor from an additive category $ C $
into an additive category $ C _ {1} $.
Then for any object $ A $
in $ C $
the functor $ T $
induces a natural homomorphism (or anti-homomorphism) $ \mathop{\rm End} A \rightarrow \mathop{\rm End} T ( A) $.
Let $ C $
be the category of modules over a ring $ R $.
For an $ R $-
module $ A $
the ring $ \mathop{\rm End} A $
consists of all endomorphisms of the Abelian group $ A $
that commute with multiplication by elements of $ R $.
The sum of two endomorphism $ \phi $
and $ \psi $
is defined by the formula
$$
( \phi + \psi ) ( a) = \phi ( a) +
\psi ( a) ,\ a \in A .
$$
If $ R $
is commutative, then $ \mathop{\rm End} A $
has the natural structure of an $ R $-
algebra. Many properties of the module $ A $
can be characterized in terms of $ \mathop{\rm End} A $.
For example, $ A $
is an irreducible module if and only if $ \mathop{\rm End} A $
is a skew-field.
An arbitrary homomorphism $ \pi $
of an associative ring $ K $
into $ \mathop{\rm End} A $
is called a representation of the ring $ K $(
by endomorphisms of the object $ A $).
If $ K $
has a unit element, then one imposes the additional condition $ \pi ( 1) = 1 _ {A} $.
Any associative ring $ K $
has a faithful representation in the endomorphism ring of a certain Abelian group $ A $.
If $ K $,
moreover, has a unit element, then $ A $
can be chosen as the additive group of $ K $
on which the elements of $ K $
act by left multiplication. If $ K $
has no unit element and $ K _ {1} $
is obtained from $ K $
by adjoining a unit to $ K $
externally, then $ A $
can be taken to be the additive group of $ K _ {1} $.
In the case of an Abelian variety $ X $
one considers, apart from the ring $ \mathop{\rm End} X $,
which is a finitely-generated $ \mathbf Z $-
module, the algebra of endomorphisms (algebra of complex multiplications) $ \mathop{\rm End} ^ {0} X = \mathbf Q \otimes _ {\mathbf Z } \mathop{\rm End} X $.
References
[1] | C. Faith, "Algebra: rings, modules, and categories" , 1–2 , Springer (1973–1976) |
[2] | D. Mumford, "Abelian varieties" , Oxford Univ. Press (1974) |
[3] | V.T. Markov, A.V. Mikhalev, L.A. Skornyakov, A.A. Tugaubaev, "Endomorphism rings of modules and lattices of submodules" J. Soviet Math. , 31 : 3 (1985) pp. 3005–3051 Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 21 (1983) pp. 183–254 |