Namespaces
Variants
Actions

Difference between pages "Integral representations of linear operators" and "Elliptic coordinates"

From Encyclopedia of Mathematics
(Difference between pages)
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100801.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100802.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100803.png" />-finite measure spaces (cf. [[Measure space|Measure space]]) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100804.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100805.png" /> be the spaces of the complex-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100806.png" />-measurable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100807.png" /> and the complex-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100808.png" />-measurable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100809.png" />, respectively. A linear subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008011.png" /> is called an ideal space, or a solid linear subspace, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008012.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008016.png" />-a.e., imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008017.png" />. The classical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008019.png" />-spaces (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008020.png" />), the Orlicz spaces and, more generally, Banach function spaces (cf. also [[Orlicz space|Orlicz space]]; [[Banach space|Banach space]]) are typical examples of normed ideal spaces.
+
<!--
 +
e0354401.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/E035/E.0305440 Elliptic coordinates
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008022.png" /> are ideal spaces contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008024.png" />, respectively, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008025.png" />, the linear space of all linear operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008026.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008027.png" />, is called an integral operator, kernel operator, if there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008028.png" />-measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008030.png" />, such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008032.png" />-a.e. with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008034.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Integral operators, also known as integral transforms, play an important role in analysis. It is a natural question to ask: Which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008035.png" /> are integral operators? J. von Neumann [[#References|[a5]]] was the first to show that for the ideal spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008036.png" /> the identity operator does not admit an integral representation. He proved, however, that a bounded self-adjoint linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008037.png" /> is unitarily equivalent (cf. also [[Unitarily-equivalent operators|Unitarily-equivalent operators]]) to an integral operator if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008038.png" /> is an element of the limit spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008039.png" />.
+
Two numbers  $  \sigma $
 +
and $  \tau $
 +
connected with rectangular Cartesian coordinates by the formulas
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008040.png" /> is called a positive linear operator if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008041.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008042.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008043.png" />-a.e.). An integral operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008044.png" /> with kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008045.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008046.png" />) is positive if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008048.png" />-a.e.; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008049.png" /> is called regular if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008050.png" /> maps order-bounded sets into order-bounded sets, i.e., for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008051.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008052.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008053.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008054.png" />, one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008055.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008056.png" /> is ordered bounded if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008057.png" /> can be written as the difference of two positive linear operators if and only if its modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008058.png" />, where for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008060.png" />, is a positive linear operator mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008061.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008062.png" />.
+
$$
 +
x  ^ {2}  =
 +
\frac{( \sigma + a ^ {2} ) ( \tau + a  ^ {2} ) }{a ^ {2} - b  ^ {2} }
 +
,
 +
$$
  
The following theorem holds: An integral operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008063.png" /> is regular if and only if its modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008064.png" /> is a positive linear operator mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008065.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008066.png" />. In that case, the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008067.png" /> is given by the modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008068.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008069.png" />) of the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008070.png" />.
+
$$
 +
y  ^ {2}  =
 +
\frac{( \sigma + b  ^ {2} ) ( \tau + b  ^ {2} ) }{b  ^ {2} - a ^ {2} }
 +
,
 +
$$
  
An integral transform need not be regular, as is shown, for instance, by the [[Fourier transform|Fourier transform]] and the [[Hilbert transform|Hilbert transform]].
+
where  $  - a  ^ {2} < \tau < - b  ^ {2} < \sigma < \infty $.
  
Integral operators can be characterized via a continuity property: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008071.png" /> is a linear integral operator if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008072.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008073.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008074.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008075.png" />-measure as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008076.png" /> imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008077.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008078.png" />-a.e.) as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008079.png" />.
+
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/e035440a.gif" />
  
An earlier version of this theorem for bilinear forms is due to H. Nakano [[#References|[a4]]]. For regular linear operators defined on KB-spaces (cf. also [[K-space|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008080.png" />-space]]), the result appeared in a slightly different form in a paper by G.Ya. Lozonovskii [[#References|[a3]]]. The present version is due to A.V. Bukhvalov [[#References|[a1]]]. A pure measure-theoretic proof and related results were given by A. Schep [[#References|[a6]]]. For details and further results see [[#References|[a2]]].
+
Figure: e035440a
 +
 
 +
The coordinate lines are (see Fig.): confocal ellipses ( $  \sigma = \textrm{ const } $)
 +
and hyperbolas ( $  \tau = \textrm{ const } $)
 +
with foci ( $  - \sqrt {a  ^ {2} - b  ^ {2} } , 0 $)
 +
and ( $  \sqrt {a  ^ {2} - b  ^ {2} } , 0 $).
 +
The system of elliptic coordinates is orthogonal. To every pair of numbers  $  \sigma $
 +
and  $  \tau $
 +
correspond four points, one in each quadrant of the  $  xy $-
 +
plane.
 +
 
 +
The [[Lamé coefficients|Lamé coefficients]] are
 +
 
 +
$$
 +
L _  \sigma  = 
 +
\frac{1}{2}
 +
\sqrt {
 +
 
 +
\frac{\sigma - \tau }{( \sigma + a  ^ {2} )
 +
( \tau + b  ^ {2} ) }
 +
} ,
 +
$$
 +
 
 +
$$
 +
L _  \tau  = 
 +
\frac{1}{2}
 +
\sqrt {
 +
\frac{\tau - \sigma }{(
 +
\sigma - a  ^ {2} ) ( \tau + b  ^ {2} ) }
 +
} .
 +
$$
 +
 
 +
In elliptic coordinates the Laplace equation allows separation of variables.
 +
 
 +
Degenerate elliptic coordinates are two numbers  $  \widetilde \sigma  $
 +
and  $  \widetilde \tau  $
 +
connected with  $  \sigma $
 +
and  $  \tau $
 +
by the formulas (for  $  a = 1 $,
 +
$  b = 0 $):
 +
 
 +
$$
 +
\sigma  =  \sinh  ^ {2}  \widetilde \sigma  ,\ \
 +
\tau  = - \sin  ^ {2}  \widetilde \tau  ,
 +
$$
 +
 
 +
and with Cartesian coordinates  $  x $
 +
and  $  y $
 +
by
 +
 
 +
$$
 +
x  =  \cosh  \widetilde \sigma    \cos  \widetilde \tau  ,\ \
 +
y  =  \sinh  \widetilde \sigma    \sin  \widetilde \tau  ,
 +
$$
 +
 
 +
where  $  0 \leq  \widetilde \sigma  < \infty $
 +
and  $  0 \leq  \widetilde \tau  < 2 \pi $.  
 +
Occasionally these coordinates are also called elliptic.
 +
 
 +
The Lamé coefficients are:
 +
 
 +
$$
 +
L _ {\widetilde \sigma  }  =  L _ {\widetilde \tau  }  = \
 +
\sqrt {\cosh  ^ {2}  \widetilde \sigma  -
 +
\cos  ^ {2}  \widetilde \tau  } .
 +
$$
 +
 
 +
The area element is:
 +
 
 +
$$
 +
d s  =  ( \cosh  ^ {2}  \widetilde \sigma  -
 +
\cos  ^ {2}  \widetilde \tau  )  d \widetilde \sigma    d \widetilde \tau  .
 +
$$
 +
 
 +
The Laplace operator is:
 +
 
 +
$$
 +
\Delta \phi  = 
 +
\frac{1}{\cosh  ^ {2}  \widetilde \sigma  -
 +
\cos  ^ {2}  \widetilde \tau  }
 +
\left (
 +
 
 +
\frac{\partial  ^ {2} \phi }{\partial  \widetilde \sigma    ^ {2} }
 +
+
 +
 
 +
\frac{\partial  ^ {2} \phi }{\partial  \widetilde \tau    ^ {2} }
 +
\right ) .
 +
$$
 +
 
 +
====Comments====
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.V. Bukhvalov,  "A criterion for integral representability of linear operators" ''Funktsional. Anal. i Prilozhen.'' , '''9''' :  1 (1975)  pp. 51  (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  "Vector lattices and integral operators"  S.S. Kutateladze (ed.) , ''Mathematics and its Applications'' , '''358''' , Kluwer Acad. Publ.  (1996)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G.Ya. Lozanovsky,  "On almost integral operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008081.png" />-spaces"  ''Vestnik Leningrad Gos. Univ.'' , '''7'''  (1966)  pp. 35–44  (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  H. Nakano,  "Product spaces of semi-ordered linear spaces"  ''J. Fac. Sci. Hokkaidô Univ. Ser. I'' , '''12''' :  3  (1953)  pp. 163–210</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. von Neumann,  "Charakterisierung des Spektrums eines Integraloperators" , ''Actualités Sc. et Industr.'' , '''229''' , Hermann  (1935)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A.R. Schep,  "Kernel operators"  ''Proc. Kon. Nederl. Akad. Wetensch.'' , '''A 82''' (1979)  pp. 39–53</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Darboux,  "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars (1887)  pp. 1–18</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


Two numbers $ \sigma $ and $ \tau $ connected with rectangular Cartesian coordinates by the formulas

$$ x ^ {2} = \frac{( \sigma + a ^ {2} ) ( \tau + a ^ {2} ) }{a ^ {2} - b ^ {2} } , $$

$$ y ^ {2} = \frac{( \sigma + b ^ {2} ) ( \tau + b ^ {2} ) }{b ^ {2} - a ^ {2} } , $$

where $ - a ^ {2} < \tau < - b ^ {2} < \sigma < \infty $.

Figure: e035440a

The coordinate lines are (see Fig.): confocal ellipses ( $ \sigma = \textrm{ const } $) and hyperbolas ( $ \tau = \textrm{ const } $) with foci ( $ - \sqrt {a ^ {2} - b ^ {2} } , 0 $) and ( $ \sqrt {a ^ {2} - b ^ {2} } , 0 $). The system of elliptic coordinates is orthogonal. To every pair of numbers $ \sigma $ and $ \tau $ correspond four points, one in each quadrant of the $ xy $- plane.

The Lamé coefficients are

$$ L _ \sigma = \frac{1}{2} \sqrt { \frac{\sigma - \tau }{( \sigma + a ^ {2} ) ( \tau + b ^ {2} ) } } , $$

$$ L _ \tau = \frac{1}{2} \sqrt { \frac{\tau - \sigma }{( \sigma - a ^ {2} ) ( \tau + b ^ {2} ) } } . $$

In elliptic coordinates the Laplace equation allows separation of variables.

Degenerate elliptic coordinates are two numbers $ \widetilde \sigma $ and $ \widetilde \tau $ connected with $ \sigma $ and $ \tau $ by the formulas (for $ a = 1 $, $ b = 0 $):

$$ \sigma = \sinh ^ {2} \widetilde \sigma ,\ \ \tau = - \sin ^ {2} \widetilde \tau , $$

and with Cartesian coordinates $ x $ and $ y $ by

$$ x = \cosh \widetilde \sigma \cos \widetilde \tau ,\ \ y = \sinh \widetilde \sigma \sin \widetilde \tau , $$

where $ 0 \leq \widetilde \sigma < \infty $ and $ 0 \leq \widetilde \tau < 2 \pi $. Occasionally these coordinates are also called elliptic.

The Lamé coefficients are:

$$ L _ {\widetilde \sigma } = L _ {\widetilde \tau } = \ \sqrt {\cosh ^ {2} \widetilde \sigma - \cos ^ {2} \widetilde \tau } . $$

The area element is:

$$ d s = ( \cosh ^ {2} \widetilde \sigma - \cos ^ {2} \widetilde \tau ) d \widetilde \sigma d \widetilde \tau . $$

The Laplace operator is:

$$ \Delta \phi = \frac{1}{\cosh ^ {2} \widetilde \sigma - \cos ^ {2} \widetilde \tau } \left ( \frac{\partial ^ {2} \phi }{\partial \widetilde \sigma ^ {2} } + \frac{\partial ^ {2} \phi }{\partial \widetilde \tau ^ {2} } \right ) . $$

Comments

References

[a1] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18
How to Cite This Entry:
Integral representations of linear operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_representations_of_linear_operators&oldid=19185
This article was adapted from an original article by W. Luxemburg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article