|
|
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100801.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100802.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100803.png" />-finite measure spaces (cf. [[Measure space|Measure space]]) and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100804.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100805.png" /> be the spaces of the complex-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100806.png" />-measurable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100807.png" /> and the complex-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100808.png" />-measurable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i1100809.png" />, respectively. A linear subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008010.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008011.png" /> is called an ideal space, or a solid linear subspace, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008012.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008016.png" />-a.e., imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008017.png" />. The classical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008019.png" />-spaces (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008020.png" />), the Orlicz spaces and, more generally, Banach function spaces (cf. also [[Orlicz space|Orlicz space]]; [[Banach space|Banach space]]) are typical examples of normed ideal spaces.
| + | <!-- |
| + | e0354401.png |
| + | $#A+1 = 29 n = 0 |
| + | $#C+1 = 29 : ~/encyclopedia/old_files/data/E035/E.0305440 Elliptic coordinates |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008022.png" /> are ideal spaces contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008024.png" />, respectively, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008025.png" />, the linear space of all linear operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008026.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008027.png" />, is called an integral operator, kernel operator, if there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008028.png" />-measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008030.png" />, such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008032.png" />-a.e. with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008034.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Integral operators, also known as integral transforms, play an important role in analysis. It is a natural question to ask: Which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008035.png" /> are integral operators? J. von Neumann [[#References|[a5]]] was the first to show that for the ideal spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008036.png" /> the identity operator does not admit an integral representation. He proved, however, that a bounded self-adjoint linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008037.png" /> is unitarily equivalent (cf. also [[Unitarily-equivalent operators|Unitarily-equivalent operators]]) to an integral operator if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008038.png" /> is an element of the limit spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008039.png" />.
| + | Two numbers $ \sigma $ |
| + | and $ \tau $ |
| + | connected with rectangular Cartesian coordinates by the formulas |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008040.png" /> is called a positive linear operator if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008041.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008042.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008043.png" />-a.e.). An integral operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008044.png" /> with kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008045.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008046.png" />) is positive if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008048.png" />-a.e.; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008049.png" /> is called regular if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008050.png" /> maps order-bounded sets into order-bounded sets, i.e., for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008051.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008052.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008053.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008054.png" />, one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008055.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008056.png" /> is ordered bounded if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008057.png" /> can be written as the difference of two positive linear operators if and only if its modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008058.png" />, where for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008059.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008060.png" />, is a positive linear operator mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008061.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008062.png" />.
| + | $$ |
| + | x ^ {2} = |
| + | \frac{( \sigma + a ^ {2} ) ( \tau + a ^ {2} ) }{a ^ {2} - b ^ {2} } |
| + | , |
| + | $$ |
| | | |
− | The following theorem holds: An integral operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008063.png" /> is regular if and only if its modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008064.png" /> is a positive linear operator mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008065.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008066.png" />. In that case, the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008067.png" /> is given by the modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008068.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008069.png" />) of the kernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008070.png" />.
| + | $$ |
| + | y ^ {2} = |
| + | \frac{( \sigma + b ^ {2} ) ( \tau + b ^ {2} ) }{b ^ {2} - a ^ {2} } |
| + | , |
| + | $$ |
| | | |
− | An integral transform need not be regular, as is shown, for instance, by the [[Fourier transform|Fourier transform]] and the [[Hilbert transform|Hilbert transform]].
| + | where $ - a ^ {2} < \tau < - b ^ {2} < \sigma < \infty $. |
| | | |
− | Integral operators can be characterized via a continuity property: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008071.png" /> is a linear integral operator if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008072.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008073.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008074.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008075.png" />-measure as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008076.png" /> imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008077.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008078.png" />-a.e.) as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008079.png" />.
| + | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/e035440a.gif" /> |
| | | |
− | An earlier version of this theorem for bilinear forms is due to H. Nakano [[#References|[a4]]]. For regular linear operators defined on KB-spaces (cf. also [[K-space|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008080.png" />-space]]), the result appeared in a slightly different form in a paper by G.Ya. Lozonovskii [[#References|[a3]]]. The present version is due to A.V. Bukhvalov [[#References|[a1]]]. A pure measure-theoretic proof and related results were given by A. Schep [[#References|[a6]]]. For details and further results see [[#References|[a2]]].
| + | Figure: e035440a |
| + | |
| + | The coordinate lines are (see Fig.): confocal ellipses ( $ \sigma = \textrm{ const } $) |
| + | and hyperbolas ( $ \tau = \textrm{ const } $) |
| + | with foci ( $ - \sqrt {a ^ {2} - b ^ {2} } , 0 $) |
| + | and ( $ \sqrt {a ^ {2} - b ^ {2} } , 0 $). |
| + | The system of elliptic coordinates is orthogonal. To every pair of numbers $ \sigma $ |
| + | and $ \tau $ |
| + | correspond four points, one in each quadrant of the $ xy $- |
| + | plane. |
| + | |
| + | The [[Lamé coefficients|Lamé coefficients]] are |
| + | |
| + | $$ |
| + | L _ \sigma = |
| + | \frac{1}{2} |
| + | \sqrt { |
| + | |
| + | \frac{\sigma - \tau }{( \sigma + a ^ {2} ) |
| + | ( \tau + b ^ {2} ) } |
| + | } , |
| + | $$ |
| + | |
| + | $$ |
| + | L _ \tau = |
| + | \frac{1}{2} |
| + | \sqrt { |
| + | \frac{\tau - \sigma }{( |
| + | \sigma - a ^ {2} ) ( \tau + b ^ {2} ) } |
| + | } . |
| + | $$ |
| + | |
| + | In elliptic coordinates the Laplace equation allows separation of variables. |
| + | |
| + | Degenerate elliptic coordinates are two numbers $ \widetilde \sigma $ |
| + | and $ \widetilde \tau $ |
| + | connected with $ \sigma $ |
| + | and $ \tau $ |
| + | by the formulas (for $ a = 1 $, |
| + | $ b = 0 $): |
| + | |
| + | $$ |
| + | \sigma = \sinh ^ {2} \widetilde \sigma ,\ \ |
| + | \tau = - \sin ^ {2} \widetilde \tau , |
| + | $$ |
| + | |
| + | and with Cartesian coordinates $ x $ |
| + | and $ y $ |
| + | by |
| + | |
| + | $$ |
| + | x = \cosh \widetilde \sigma \cos \widetilde \tau ,\ \ |
| + | y = \sinh \widetilde \sigma \sin \widetilde \tau , |
| + | $$ |
| + | |
| + | where $ 0 \leq \widetilde \sigma < \infty $ |
| + | and $ 0 \leq \widetilde \tau < 2 \pi $. |
| + | Occasionally these coordinates are also called elliptic. |
| + | |
| + | The Lamé coefficients are: |
| + | |
| + | $$ |
| + | L _ {\widetilde \sigma } = L _ {\widetilde \tau } = \ |
| + | \sqrt {\cosh ^ {2} \widetilde \sigma - |
| + | \cos ^ {2} \widetilde \tau } . |
| + | $$ |
| + | |
| + | The area element is: |
| + | |
| + | $$ |
| + | d s = ( \cosh ^ {2} \widetilde \sigma - |
| + | \cos ^ {2} \widetilde \tau ) d \widetilde \sigma d \widetilde \tau . |
| + | $$ |
| + | |
| + | The Laplace operator is: |
| + | |
| + | $$ |
| + | \Delta \phi = |
| + | \frac{1}{\cosh ^ {2} \widetilde \sigma - |
| + | \cos ^ {2} \widetilde \tau } |
| + | \left ( |
| + | |
| + | \frac{\partial ^ {2} \phi }{\partial \widetilde \sigma ^ {2} } |
| + | + |
| + | |
| + | \frac{\partial ^ {2} \phi }{\partial \widetilde \tau ^ {2} } |
| + | \right ) . |
| + | $$ |
| + | |
| + | ====Comments==== |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.V. Bukhvalov, "A criterion for integral representability of linear operators" ''Funktsional. Anal. i Prilozhen.'' , '''9''' : 1 (1975) pp. 51 (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> "Vector lattices and integral operators" S.S. Kutateladze (ed.) , ''Mathematics and its Applications'' , '''358''' , Kluwer Acad. Publ. (1996)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.Ya. Lozanovsky, "On almost integral operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i110/i110080/i11008081.png" />-spaces" ''Vestnik Leningrad Gos. Univ.'' , '''7''' (1966) pp. 35–44 (In Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> H. Nakano, "Product spaces of semi-ordered linear spaces" ''J. Fac. Sci. Hokkaidô Univ. Ser. I'' , '''12''' : 3 (1953) pp. 163–210</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. von Neumann, "Charakterisierung des Spektrums eines Integraloperators" , ''Actualités Sc. et Industr.'' , '''229''' , Hermann (1935)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A.R. Schep, "Kernel operators" ''Proc. Kon. Nederl. Akad. Wetensch.'' , '''A 82''' (1979) pp. 39–53</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1''' , Gauthier-Villars (1887) pp. 1–18</TD></TR></table> |
Two numbers $ \sigma $
and $ \tau $
connected with rectangular Cartesian coordinates by the formulas
$$
x ^ {2} =
\frac{( \sigma + a ^ {2} ) ( \tau + a ^ {2} ) }{a ^ {2} - b ^ {2} }
,
$$
$$
y ^ {2} =
\frac{( \sigma + b ^ {2} ) ( \tau + b ^ {2} ) }{b ^ {2} - a ^ {2} }
,
$$
where $ - a ^ {2} < \tau < - b ^ {2} < \sigma < \infty $.
Figure: e035440a
The coordinate lines are (see Fig.): confocal ellipses ( $ \sigma = \textrm{ const } $)
and hyperbolas ( $ \tau = \textrm{ const } $)
with foci ( $ - \sqrt {a ^ {2} - b ^ {2} } , 0 $)
and ( $ \sqrt {a ^ {2} - b ^ {2} } , 0 $).
The system of elliptic coordinates is orthogonal. To every pair of numbers $ \sigma $
and $ \tau $
correspond four points, one in each quadrant of the $ xy $-
plane.
The Lamé coefficients are
$$
L _ \sigma =
\frac{1}{2}
\sqrt {
\frac{\sigma - \tau }{( \sigma + a ^ {2} )
( \tau + b ^ {2} ) }
} ,
$$
$$
L _ \tau =
\frac{1}{2}
\sqrt {
\frac{\tau - \sigma }{(
\sigma - a ^ {2} ) ( \tau + b ^ {2} ) }
} .
$$
In elliptic coordinates the Laplace equation allows separation of variables.
Degenerate elliptic coordinates are two numbers $ \widetilde \sigma $
and $ \widetilde \tau $
connected with $ \sigma $
and $ \tau $
by the formulas (for $ a = 1 $,
$ b = 0 $):
$$
\sigma = \sinh ^ {2} \widetilde \sigma ,\ \
\tau = - \sin ^ {2} \widetilde \tau ,
$$
and with Cartesian coordinates $ x $
and $ y $
by
$$
x = \cosh \widetilde \sigma \cos \widetilde \tau ,\ \
y = \sinh \widetilde \sigma \sin \widetilde \tau ,
$$
where $ 0 \leq \widetilde \sigma < \infty $
and $ 0 \leq \widetilde \tau < 2 \pi $.
Occasionally these coordinates are also called elliptic.
The Lamé coefficients are:
$$
L _ {\widetilde \sigma } = L _ {\widetilde \tau } = \
\sqrt {\cosh ^ {2} \widetilde \sigma -
\cos ^ {2} \widetilde \tau } .
$$
The area element is:
$$
d s = ( \cosh ^ {2} \widetilde \sigma -
\cos ^ {2} \widetilde \tau ) d \widetilde \sigma d \widetilde \tau .
$$
The Laplace operator is:
$$
\Delta \phi =
\frac{1}{\cosh ^ {2} \widetilde \sigma -
\cos ^ {2} \widetilde \tau }
\left (
\frac{\partial ^ {2} \phi }{\partial \widetilde \sigma ^ {2} }
+
\frac{\partial ^ {2} \phi }{\partial \widetilde \tau ^ {2} }
\right ) .
$$
References
[a1] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18 |