Difference between revisions of "Ellipse of normal curvature"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | e0354001.png | ||
| + | $#A+1 = 41 n = 0 | ||
| + | $#C+1 = 41 : ~/encyclopedia/old_files/data/E035/E.0305400 Ellipse of normal curvature | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A geometrical construction characterizing the distribution of the curvatures at a certain point on a regular surface $ M ^ {2} $ | |
| + | in the $ n $- | ||
| + | dimensional Euclidean space $ E ^ {n} $. | ||
| + | Let $ P $ | ||
| + | be a point on a surface $ M ^ {2} $ | ||
| + | and let $ N _ {\mathbf l } $ | ||
| + | be the $ ( n - 1) $- | ||
| + | dimensional subspace containing the normal space $ N $ | ||
| + | to $ M ^ {2} $ | ||
| + | at $ P $ | ||
| + | and the tangent to $ M ^ {2} $ | ||
| + | at $ P $ | ||
| + | in the direction $ \mathbf l $. | ||
| + | The section $ \gamma _ {\mathbf l } $ | ||
| + | of $ M ^ {2} $ | ||
| + | by $ N _ {\mathbf l } $ | ||
| + | is called a normal section at $ P $. | ||
| + | The vector $ d ^ {2} \gamma _ {\mathbf l } /ds ^ {2} $, | ||
| + | lying in $ N $, | ||
| + | where $ s $ | ||
| + | is the natural parameter on $ \gamma _ {\mathbf l } $, | ||
| + | is called the vector of normal curvature of $ M ^ {2} $ | ||
| + | in the direction $ \mathbf l $. | ||
| + | The end points of the vectors of normal curvature form the ellipse of normal curvature. | ||
| − | + | For a two-dimensional surface $ M ^ {2} $ | |
| + | with non-zero Gaussian curvature in $ E ^ {n} $ | ||
| + | to lie in a certain three-dimensional subspace $ E ^ {3} $ | ||
| + | it is necessary and sufficient that its ellipse of normal curvature at all points $ P $ | ||
| + | degenerates to a segment passing through $ P $( | ||
| + | see ). | ||
| − | Points at which | + | Similarly one defines the indicatrix of curvature for a submanifold $ M ^ {m} $ |
| + | of arbitrary dimension $ m $. | ||
| + | It is an $ ( m - 1) $- | ||
| + | dimensional algebraic surface of order $ 2 ^ {m-} 1 $. | ||
| + | The vectors of normal curvature form a cone which, together with the tangent space to $ M ^ {m} $, | ||
| + | determines a subspace $ E ^ {m _ {1} } $, | ||
| + | the so-called domain of curvature of $ M ^ {m} $ | ||
| + | at $ P $. | ||
| + | The dimension $ m _ {1} $ | ||
| + | of this subspace satisfies | ||
| + | |||
| + | $$ | ||
| + | m _ {1} \leq \ | ||
| + | { | ||
| + | \frac{m ( m + 3) }{2} | ||
| + | } ,\ \ | ||
| + | m _ {1} \leq n. | ||
| + | $$ | ||
| + | |||
| + | Points at which $ m _ {1} = m + 1 $ | ||
| + | are called axial, those at which $ m _ {1} = m + 2 $— | ||
| + | planar, and those at which $ m _ {1} = m + 3 $— | ||
| + | spatial. Sometimes one considers for submanifolds of large codimension the [[Dupin indicatrix|Dupin indicatrix]], the construction of which is completely analogous to that of the Dupin indicatrix for a surface in three-dimensional space. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff (1935)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> Yu.A. Aminov, "Torsion of two-dimensional surfaces in Euclidean spaces" ''Ukrain. Geom. Sb.'' , '''17''' (1975) pp. 3–14 (In Russian)</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> Yu.A. Aminov, "An analogue of Ricci's condition for a minimal variety in a Riemannian space" ''Ukrain. Geom. Sb.'' , '''17''' (1975) pp. 15–22; 144 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff (1935)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> Yu.A. Aminov, "Torsion of two-dimensional surfaces in Euclidean spaces" ''Ukrain. Geom. Sb.'' , '''17''' (1975) pp. 3–14 (In Russian)</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> Yu.A. Aminov, "An analogue of Ricci's condition for a minimal variety in a Riemannian space" ''Ukrain. Geom. Sb.'' , '''17''' (1975) pp. 15–22; 144 (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. O'Neill, "Elementary differential geometry" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1–2''' , Interscience (1969) pp. Chapt. 7</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''3''' , Publish or Perish pp. 1–5</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. O'Neill, "Elementary differential geometry" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1–2''' , Interscience (1969) pp. Chapt. 7</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''3''' , Publish or Perish pp. 1–5</TD></TR></table> | ||
Latest revision as of 19:37, 5 June 2020
A geometrical construction characterizing the distribution of the curvatures at a certain point on a regular surface $ M ^ {2} $
in the $ n $-
dimensional Euclidean space $ E ^ {n} $.
Let $ P $
be a point on a surface $ M ^ {2} $
and let $ N _ {\mathbf l } $
be the $ ( n - 1) $-
dimensional subspace containing the normal space $ N $
to $ M ^ {2} $
at $ P $
and the tangent to $ M ^ {2} $
at $ P $
in the direction $ \mathbf l $.
The section $ \gamma _ {\mathbf l } $
of $ M ^ {2} $
by $ N _ {\mathbf l } $
is called a normal section at $ P $.
The vector $ d ^ {2} \gamma _ {\mathbf l } /ds ^ {2} $,
lying in $ N $,
where $ s $
is the natural parameter on $ \gamma _ {\mathbf l } $,
is called the vector of normal curvature of $ M ^ {2} $
in the direction $ \mathbf l $.
The end points of the vectors of normal curvature form the ellipse of normal curvature.
For a two-dimensional surface $ M ^ {2} $ with non-zero Gaussian curvature in $ E ^ {n} $ to lie in a certain three-dimensional subspace $ E ^ {3} $ it is necessary and sufficient that its ellipse of normal curvature at all points $ P $ degenerates to a segment passing through $ P $( see ).
Similarly one defines the indicatrix of curvature for a submanifold $ M ^ {m} $ of arbitrary dimension $ m $. It is an $ ( m - 1) $- dimensional algebraic surface of order $ 2 ^ {m-} 1 $. The vectors of normal curvature form a cone which, together with the tangent space to $ M ^ {m} $, determines a subspace $ E ^ {m _ {1} } $, the so-called domain of curvature of $ M ^ {m} $ at $ P $. The dimension $ m _ {1} $ of this subspace satisfies
$$ m _ {1} \leq \ { \frac{m ( m + 3) }{2} } ,\ \ m _ {1} \leq n. $$
Points at which $ m _ {1} = m + 1 $ are called axial, those at which $ m _ {1} = m + 2 $— planar, and those at which $ m _ {1} = m + 3 $— spatial. Sometimes one considers for submanifolds of large codimension the Dupin indicatrix, the construction of which is completely analogous to that of the Dupin indicatrix for a surface in three-dimensional space.
References
| [1] | J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , 2 , Noordhoff (1935) |
| [2a] | Yu.A. Aminov, "Torsion of two-dimensional surfaces in Euclidean spaces" Ukrain. Geom. Sb. , 17 (1975) pp. 3–14 (In Russian) |
| [2b] | Yu.A. Aminov, "An analogue of Ricci's condition for a minimal variety in a Riemannian space" Ukrain. Geom. Sb. , 17 (1975) pp. 15–22; 144 (In Russian) |
Comments
References
| [a1] | M. do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) |
| [a2] | B. O'Neill, "Elementary differential geometry" , Acad. Press (1966) |
| [a3] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1–2 , Interscience (1969) pp. Chapt. 7 |
| [a4] | M. Spivak, "A comprehensive introduction to differential geometry" , 3 , Publish or Perish pp. 1–5 |
Ellipse of normal curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ellipse_of_normal_curvature&oldid=11996