Namespaces
Variants
Actions

Difference between revisions of "Dupin cyclide"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A surface for which both families of curvature lines consist of circles, so that it is a special case of a [[Canal surface|canal surface]]. Both sheets of the focal set of a Dupin cyclide degenerate to curves, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d034/d034170/d0341701.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d034/d034170/d0341702.png" />, which are curves of the second order. There are three types of Dupin cyclides.
+
<!--
 +
d0341701.png
 +
$#A+1 = 8 n = 0
 +
$#C+1 = 8 : ~/encyclopedia/old_files/data/D034/D.0304170 Dupin cyclide
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A surface for which both families of curvature lines consist of circles, so that it is a special case of a [[Canal surface|canal surface]]. Both sheets of the focal set of a Dupin cyclide degenerate to curves, $  \Gamma _ {1} $
 +
and $  \Gamma _ {2} $,  
 +
which are curves of the second order. There are three types of Dupin cyclides.
  
 
1) The evolutes are an ellipse and a hyperbola; the radius vector of the corresponding Dupin cyclide is
 
1) The evolutes are an ellipse and a hyperbola; the radius vector of the corresponding Dupin cyclide is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d034/d034170/d0341703.png" /></td> </tr></table>
+
$$
 +
=
 +
\frac{V b  \sin  u }{U + V }
 +
,\  y  =
 +
\frac{U b  \sinh  v }{U + V }
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d034/d034170/d0341704.png" /></td> </tr></table>
+
$$
 +
=
 +
\frac{V a  \cos  u + U c  \cosh  v }{U + V }
 +
,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d034/d034170/d0341705.png" /></td> </tr></table>
+
$$
 +
= c \cos  u + d ,\  V  = - a  \cosh  v - d ,\  d =
 +
\textrm{ const } .
 +
$$
  
 
2) The evolutes are focal parabolas; the radius vector is
 
2) The evolutes are focal parabolas; the radius vector is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d034/d034170/d0341706.png" /></td> </tr></table>
+
$$
 +
=
 +
\frac{Vu}{U + V }
 +
,\  y  =
 +
\frac{Uv}{U + V }
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d034/d034170/d0341707.png" /></td> </tr></table>
+
$$
 +
=
 +
\frac{V ( 2 u  ^ {2} - p  ^ {2} ) - U ( 2 v  ^ {2} - p  ^ {2} ) }{U p ( U + V ) }
 +
,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d034/d034170/d0341708.png" /></td> </tr></table>
+
$$
 +
=
 +
\frac{2 u  ^ {2} + p + q }{u p }
 +
,\  V  =
 +
\frac{2 v  ^ {2} + p  ^ {2} -
 +
q  ^ {2} }{u p }
 +
,\  q = \textrm{ const } .
 +
$$
  
 
3) The evolutes are a circle and a straight line; the corresponding Dupin cyclide is a [[Torus|torus]].
 
3) The evolutes are a circle and a straight line; the corresponding Dupin cyclide is a [[Torus|torus]].
Line 27: Line 71:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Ch. Dupin,  "Développements de géométrie" , Paris  (1813)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  F. Klein,  "Vorlesungen über höhere Geometrie" , Springer  (1926)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Hilbert,  S.E. Cohn-Vossen,  "Anschauliche Geometrie" , Springer  (1932)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Ch. Dupin,  "Développements de géométrie" , Paris  (1813)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  F. Klein,  "Vorlesungen über höhere Geometrie" , Springer  (1926)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D. Hilbert,  S.E. Cohn-Vossen,  "Anschauliche Geometrie" , Springer  (1932)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 19:36, 5 June 2020


A surface for which both families of curvature lines consist of circles, so that it is a special case of a canal surface. Both sheets of the focal set of a Dupin cyclide degenerate to curves, $ \Gamma _ {1} $ and $ \Gamma _ {2} $, which are curves of the second order. There are three types of Dupin cyclides.

1) The evolutes are an ellipse and a hyperbola; the radius vector of the corresponding Dupin cyclide is

$$ x = \frac{V b \sin u }{U + V } ,\ y = \frac{U b \sinh v }{U + V } , $$

$$ z = \frac{V a \cos u + U c \cosh v }{U + V } , $$

where

$$ U = c \cos u + d ,\ V = - a \cosh v - d ,\ d = \textrm{ const } . $$

2) The evolutes are focal parabolas; the radius vector is

$$ x = \frac{Vu}{U + V } ,\ y = \frac{Uv}{U + V } , $$

$$ z = \frac{V ( 2 u ^ {2} - p ^ {2} ) - U ( 2 v ^ {2} - p ^ {2} ) }{U p ( U + V ) } , $$

where

$$ U = \frac{2 u ^ {2} + p + q }{u p } ,\ V = \frac{2 v ^ {2} + p ^ {2} - q ^ {2} }{u p } ,\ q = \textrm{ const } . $$

3) The evolutes are a circle and a straight line; the corresponding Dupin cyclide is a torus.

Dupin cyclides are algebraic surfaces of order four in the cases 1) and 3) above, and of order three in the case 2).

References

[1] Ch. Dupin, "Développements de géométrie" , Paris (1813)
[2] F. Klein, "Vorlesungen über höhere Geometrie" , Springer (1926)
[3] D. Hilbert, S.E. Cohn-Vossen, "Anschauliche Geometrie" , Springer (1932)

Comments

Originally, a Dupin cycle was defined more geometrically as the envelope of a family of spheres tangent to three fixed spheres. Every Dupin cyclide can be obtained from the following three examples by inversion in a suitable sphere: a torus of revolution, a circular cylinder and a circular cone.

The Dupin cyclides are surfaces of the second order in pentaspherical coordinates and have, moreover, two equal axis. For more on Dupin cyclides see [a2], pp. 359-360 and [a3], pp. 355-356; 441. A remarkable property of cyclides is the fact that they carry four families of circles.

The natural generalization of the Dupin cyclides to higher dimensions are the so-called Dupin-hypersurfaces (see [a1]).

References

[a1] T.E. Cecil, P.J. Ryan, "Tight and taut immersions of manifolds" , Pitman (1985)
[a2] M. Berger, "Geometry" , II , Springer (1987)
[a3] M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)
[a4] W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973)
How to Cite This Entry:
Dupin cyclide. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dupin_cyclide&oldid=13429
This article was adapted from an original article by I.Kh. Sabitov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article