Difference between revisions of "Double-periodic function"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0339301.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/D033/D.0303930 Double\AAhperiodic function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A single-valued analytic function $ f ( z) $ | |
+ | with only isolated singularities on the entire finite complex $ z $- | ||
+ | plane, and such that there exists two numbers $ p _ {1} , p _ {2} $ | ||
+ | whose quotient is not a real number and which are periods of $ f ( z) $, | ||
+ | i.e. $ p _ {1} , p _ {2} $ | ||
+ | are such that the identity | ||
− | + | $$ | |
+ | f ( z + p _ {1} ) = f ( z + p _ {2} ) = f ( z) | ||
+ | $$ | ||
− | + | is valid. (If $ p _ {1} / p _ {2} $ | |
+ | is real and rational, $ f ( z) $ | ||
+ | is a simply-periodic function; if $ p _ {1} / p _ {2} $ | ||
+ | is real and irrational, $ f ( z) \equiv \textrm{ const } $.) | ||
+ | All numbers of the form $ mp _ {1} + np _ {2} $ | ||
+ | where $ m, n $ | ||
+ | are integers are also periods of $ f ( z) $. | ||
+ | All periods of a given double-periodic function form a discrete Abelian group with respect to addition, known as the period group (or the period module), a basis of which (a period basis) is constituted by two primitive periods $ 2 \omega _ {1} , 2 \omega _ {3} $, | ||
+ | $ \mathop{\rm Im} ( \omega _ {1} / \omega _ {3} ) \neq 0 $. | ||
+ | All remaining periods of this double-periodic function may be represented in the form $ 2 m \omega _ {1} + 2 n \omega _ {3} $ | ||
+ | where $ m , n $ | ||
+ | are integers. Analytic functions of one complex variable with more than two primitive periods do not exist, except for constants. | ||
− | are | + | The points of the form $ 2m \omega _ {1} + 2n \omega _ {3} $ |
+ | where $ m, n $ | ||
+ | are integers form the period lattice (subdividing the entire $ z $- | ||
+ | plane into period parallelograms). Points (numbers) $ z _ {1} $, | ||
+ | $ z _ {2} $ | ||
+ | for which | ||
− | + | $$ | |
+ | z _ {1} - z _ {2} = 2m \omega _ {1} + 2n \omega _ {3} , | ||
+ | $$ | ||
+ | |||
+ | are said to be congruent (comparable with respect to the period module). At congruent points the double-periodic function $ f ( z) $ | ||
+ | assumes the same value, so that it is sufficient to study the behaviour of $ f ( z) $ | ||
+ | in some basic period parallelogram. This is usually the set of points | ||
+ | |||
+ | $$ | ||
+ | \{ {z = z _ {0} + 2t _ {1} \omega _ {1} + 2t _ {3} \omega _ {3} } : { | ||
+ | 0 \leq t _ {1} < 1 , 0 \leq t _ {3} < 1 } \} | ||
+ | , | ||
+ | $$ | ||
i.e. the parallelogram with vertices | i.e. the parallelogram with vertices | ||
− | + | $$ | |
+ | z _ {0,\ } z _ {0} + 2 \omega _ {1} , z _ {0} + 2 \omega _ {2} = \ | ||
+ | z _ {0} + 2 \omega _ {1} + 2 \omega _ {3} ,\ | ||
+ | z _ {0} + 2 \omega _ {3} . | ||
+ | $$ | ||
− | A non-constant double-periodic function that is regular in the entire basic period parallelogram does not exist. Meromorphic double-periodic functions are called elliptic functions (cf. [[Elliptic function|Elliptic function]]). The generalization of the concept of an elliptic function to include functions | + | A non-constant double-periodic function that is regular in the entire basic period parallelogram does not exist. Meromorphic double-periodic functions are called elliptic functions (cf. [[Elliptic function|Elliptic function]]). The generalization of the concept of an elliptic function to include functions $ f ( z _ {1} \dots z _ {n} ) $ |
+ | of $ n \geq 1 $ | ||
+ | complex variables are called Abelian functions (cf. [[Abelian function|Abelian function]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''3''' , Chelsea (1977) pp. Chapt. 4 (Translated from Russian) {{MR|0444912}} {{ZBL|0357.30002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer (1968) {{MR|1535615}} {{MR|0173749}} {{MR|0011320}} {{ZBL|0945.30001}} {{ZBL|0135.12101}} {{ZBL|55.0171.01}} {{ZBL|51.0236.12}} {{ZBL|48.1207.01}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , '''2''' , Cambridge Univ. Press (1952) pp. Chapt. 20 {{MR|1424469}} {{MR|0595076}} {{MR|0178117}} {{MR|1519757}} {{ZBL|0951.30002}} {{ZBL|0108.26903}} {{ZBL|0105.26901}} {{ZBL|53.0180.04}} {{ZBL|47.0190.17}} {{ZBL|45.0433.02}} {{ZBL|33.0390.01}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.I. Akhiezer, "Elements of the theory of elliptic functions" , Amer. Math. Soc. (1990) (Translated from Russian) {{MR|1054205}} {{ZBL|0694.33001}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''3''' , Chelsea (1977) pp. Chapt. 4 (Translated from Russian) {{MR|0444912}} {{ZBL|0357.30002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer (1968) {{MR|1535615}} {{MR|0173749}} {{MR|0011320}} {{ZBL|0945.30001}} {{ZBL|0135.12101}} {{ZBL|55.0171.01}} {{ZBL|51.0236.12}} {{ZBL|48.1207.01}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , '''2''' , Cambridge Univ. Press (1952) pp. Chapt. 20 {{MR|1424469}} {{MR|0595076}} {{MR|0178117}} {{MR|1519757}} {{ZBL|0951.30002}} {{ZBL|0108.26903}} {{ZBL|0105.26901}} {{ZBL|53.0180.04}} {{ZBL|47.0190.17}} {{ZBL|45.0433.02}} {{ZBL|33.0390.01}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.I. Akhiezer, "Elements of the theory of elliptic functions" , Amer. Math. Soc. (1990) (Translated from Russian) {{MR|1054205}} {{ZBL|0694.33001}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Lang, "Elliptic functions" , Addison-Wesley (1973) {{MR|0409362}} {{ZBL|0316.14001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Lang, "Elliptic functions" , Addison-Wesley (1973) {{MR|0409362}} {{ZBL|0316.14001}} </TD></TR></table> | ||
+ | |||
+ | [[Category:Functions of a complex variable]] |
Latest revision as of 19:36, 5 June 2020
A single-valued analytic function $ f ( z) $
with only isolated singularities on the entire finite complex $ z $-
plane, and such that there exists two numbers $ p _ {1} , p _ {2} $
whose quotient is not a real number and which are periods of $ f ( z) $,
i.e. $ p _ {1} , p _ {2} $
are such that the identity
$$ f ( z + p _ {1} ) = f ( z + p _ {2} ) = f ( z) $$
is valid. (If $ p _ {1} / p _ {2} $ is real and rational, $ f ( z) $ is a simply-periodic function; if $ p _ {1} / p _ {2} $ is real and irrational, $ f ( z) \equiv \textrm{ const } $.) All numbers of the form $ mp _ {1} + np _ {2} $ where $ m, n $ are integers are also periods of $ f ( z) $. All periods of a given double-periodic function form a discrete Abelian group with respect to addition, known as the period group (or the period module), a basis of which (a period basis) is constituted by two primitive periods $ 2 \omega _ {1} , 2 \omega _ {3} $, $ \mathop{\rm Im} ( \omega _ {1} / \omega _ {3} ) \neq 0 $. All remaining periods of this double-periodic function may be represented in the form $ 2 m \omega _ {1} + 2 n \omega _ {3} $ where $ m , n $ are integers. Analytic functions of one complex variable with more than two primitive periods do not exist, except for constants.
The points of the form $ 2m \omega _ {1} + 2n \omega _ {3} $ where $ m, n $ are integers form the period lattice (subdividing the entire $ z $- plane into period parallelograms). Points (numbers) $ z _ {1} $, $ z _ {2} $ for which
$$ z _ {1} - z _ {2} = 2m \omega _ {1} + 2n \omega _ {3} , $$
are said to be congruent (comparable with respect to the period module). At congruent points the double-periodic function $ f ( z) $ assumes the same value, so that it is sufficient to study the behaviour of $ f ( z) $ in some basic period parallelogram. This is usually the set of points
$$ \{ {z = z _ {0} + 2t _ {1} \omega _ {1} + 2t _ {3} \omega _ {3} } : { 0 \leq t _ {1} < 1 , 0 \leq t _ {3} < 1 } \} , $$
i.e. the parallelogram with vertices
$$ z _ {0,\ } z _ {0} + 2 \omega _ {1} , z _ {0} + 2 \omega _ {2} = \ z _ {0} + 2 \omega _ {1} + 2 \omega _ {3} ,\ z _ {0} + 2 \omega _ {3} . $$
A non-constant double-periodic function that is regular in the entire basic period parallelogram does not exist. Meromorphic double-periodic functions are called elliptic functions (cf. Elliptic function). The generalization of the concept of an elliptic function to include functions $ f ( z _ {1} \dots z _ {n} ) $ of $ n \geq 1 $ complex variables are called Abelian functions (cf. Abelian function).
References
[1] | A.I. Markushevich, "Theory of functions of a complex variable" , 3 , Chelsea (1977) pp. Chapt. 4 (Translated from Russian) MR0444912 Zbl 0357.30002 |
[2] | A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 2 , Springer (1968) MR1535615 MR0173749 MR0011320 Zbl 0945.30001 Zbl 0135.12101 Zbl 55.0171.01 Zbl 51.0236.12 Zbl 48.1207.01 |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , 2 , Cambridge Univ. Press (1952) pp. Chapt. 20 MR1424469 MR0595076 MR0178117 MR1519757 Zbl 0951.30002 Zbl 0108.26903 Zbl 0105.26901 Zbl 53.0180.04 Zbl 47.0190.17 Zbl 45.0433.02 Zbl 33.0390.01 |
[4] | N.I. Akhiezer, "Elements of the theory of elliptic functions" , Amer. Math. Soc. (1990) (Translated from Russian) MR1054205 Zbl 0694.33001 |
Comments
References
[a1] | S. Lang, "Elliptic functions" , Addison-Wesley (1973) MR0409362 Zbl 0316.14001 |
Double-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Double-periodic_function&oldid=24426