|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | d0335601.png |
| + | $#A+1 = 103 n = 0 |
| + | $#C+1 = 103 : ~/encyclopedia/old_files/data/D033/D.0303560 Distributions, convergence of |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| {{MSC|60B10}} | | {{MSC|60B10}} |
| | | |
− | Weak convergence or convergence in variation, and defined as follows. A sequence of distributions (probability measures) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335601.png" /> on the Borel sets of a metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335602.png" /> is called weakly convergent to a distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335603.png" /> if | + | Weak convergence or convergence in variation, and defined as follows. A sequence of distributions (probability measures) $ \{ P _ {n} \} $ |
| + | on the Borel sets of a metric space $ S $ |
| + | is called weakly convergent to a distribution $ P $ |
| + | if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335604.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$ \tag{* } |
| + | \lim\limits _ { n } \int\limits _ { S } f dP _ {n} = \int\limits _ { S } f dP |
| + | $$ |
| | | |
− | for any real-valued bounded continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335605.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335606.png" />. Weak convergence is a basic type of convergence considered in probability theory. It is usually denoted by the sign <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335607.png" />. The following conditions are equivalent to weak convergence: | + | for any real-valued bounded continuous function $ f $ |
| + | on $ S $. |
| + | Weak convergence is a basic type of convergence considered in probability theory. It is usually denoted by the sign $ \Rightarrow $. |
| + | The following conditions are equivalent to weak convergence: |
| | | |
− | 1) (*) holds for any bounded uniformly-continuous real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335608.png" />; | + | 1) (*) holds for any bounded uniformly-continuous real-valued function $ f $; |
| | | |
− | 2) (*) holds for any bounded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d0335609.png" />-almost-everywhere continuous real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356010.png" />; | + | 2) (*) holds for any bounded $ P $- |
| + | almost-everywhere continuous real-valued function $ f $; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356011.png" /> for any closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356012.png" />; | + | 3) $ \lim\limits _ {n} \sup P _ {n} ( F) \leq P ( F) $ |
| + | for any closed set $ F \subset S $; |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356013.png" /> for any open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356014.png" />; | + | 4) $ \lim\limits _ {n} \inf P _ {n} ( G) \geq P ( G) $ |
| + | for any open set $ G \subset S $; |
| | | |
− | 5) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356015.png" /> for any Borel set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356016.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356018.png" /> is the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356019.png" />; | + | 5) $ \lim\limits _ {n} P _ {n} ( A) = P ( A) $ |
| + | for any Borel set $ A \subset S $ |
| + | with $ P ( \partial A) = 0 $, |
| + | where $ \partial A $ |
| + | is the boundary of $ A $; |
| | | |
− | 6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356021.png" /> is the [[Lévy–Prokhorov metric|Lévy–Prokhorov metric]]. | + | 6) $ \lim\limits _ {n} p ( P _ {n} , P) = 0 $, |
| + | where $ p $ |
| + | is the [[Lévy–Prokhorov metric|Lévy–Prokhorov metric]]. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356022.png" /> be a class of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356023.png" />, closed under intersection and such that every open set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356024.png" /> is a finite or countable union of sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356025.png" />. Then if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356026.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356027.png" />, it follows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356028.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356031.png" /> are the distribution functions corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356033.png" /> respectively, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356034.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356035.png" /> at every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356036.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356037.png" /> is continuous. | + | Let $ U $ |
| + | be a class of subsets of $ S $, |
| + | closed under intersection and such that every open set in $ S $ |
| + | is a finite or countable union of sets in $ U $. |
| + | Then if $ \lim\limits _ {n} P _ {n} ( A) = P ( A) $ |
| + | for all $ A \in U $, |
| + | it follows that $ P _ {n} \Rightarrow P $. |
| + | If $ S = \mathbf R ^ {k} $ |
| + | and $ F _ {n} $, |
| + | $ F $ |
| + | are the distribution functions corresponding to $ P _ {n} $, |
| + | $ P $ |
| + | respectively, then $ P _ {n} \Rightarrow P $ |
| + | if and only if $ F _ {n} ( x) \rightarrow F ( x) $ |
| + | at every point $ x $ |
| + | where $ F $ |
| + | is continuous. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356038.png" /> be a [[Separable space|separable space]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356039.png" /> be the class of real-valued bounded Borel functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356040.png" />. To have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356041.png" /> uniformly over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356042.png" /> for every sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356043.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356044.png" />, it is necessary and sufficient that: | + | Let $ S $ |
| + | be a [[Separable space|separable space]] and let $ {\mathcal F} $ |
| + | be the class of real-valued bounded Borel functions on $ S $. |
| + | To have $ \int _ {S} f dP _ {n} \rightarrow \int _ {S} f dP $ |
| + | uniformly over $ f \in {\mathcal F} $ |
| + | for every sequence $ \{ P _ {n} \} $ |
| + | such that $ P _ {n} \Rightarrow P $, |
| + | it is necessary and sufficient that: |
| | | |
| a) | | a) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356045.png" /></td> </tr></table> | + | $$ |
| + | \sup _ {f \in F } \omega _ {f} ( S) < \infty , |
| + | $$ |
| | | |
| b) | | b) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356046.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {\epsilon \downarrow 0 } \sup _ {f \in {\mathcal F} } \ |
| + | P ( \{ {x } : {\omega _ {f} ( S _ {x, \epsilon } ) > \delta } \} |
| + | ) = 0 \ \ |
| + | \textrm{ for } \textrm{ all } \delta > 0, |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356047.png" /></td> </tr></table>
| + | $$ |
| + | \omega _ {f} ( A) = \ |
| + | \sup \ |
| + | \{ {| f ( x) - f ( y) | } : {x, y \in A } \} |
| + | $$ |
| | | |
− | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356048.png" /> is the open ball of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356049.png" /> with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356050.png" />. If the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356051.png" /> is generated by the indicator functions of sets from some class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356052.png" />, then conditions a) and b) lead to the condition | + | and $ S _ {x, \epsilon } $ |
| + | is the open ball of radius $ \epsilon $ |
| + | with centre $ x $. |
| + | If the class $ {\mathcal F} $ |
| + | is generated by the indicator functions of sets from some class $ E $, |
| + | then conditions a) and b) lead to the condition |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356053.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {\epsilon \downarrow 0 } \ |
| + | \sup _ {A \in E } \ |
| + | P ( A ^ \epsilon \setminus |
| + | A ^ {- \epsilon } ) = 0, |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356054.png" /></td> </tr></table>
| + | $$ |
| + | A ^ \epsilon = \ |
| + | \cup _ {x \in A } |
| + | S _ {x, \epsilon } ,\ \ |
| + | A ^ {- \epsilon } = \ |
| + | S \setminus ( S \setminus A) ^ \epsilon |
| + | $$ |
| | | |
− | (when each open ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356055.png" /> is connected, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356056.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356057.png" /> and the distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356058.png" /> is absolutely continuous with respect to Lebesgue measure, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356059.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356060.png" /> uniformly over all convex Borel sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356061.png" />. | + | (when each open ball in $ S $ |
| + | is connected, $ A ^ \epsilon \setminus A ^ {- \epsilon } = ( \partial A) ^ \epsilon $). |
| + | If $ S = \mathbf R ^ {k} $ |
| + | and the distribution $ P $ |
| + | is absolutely continuous with respect to Lebesgue measure, then $ P _ {n} \Rightarrow P $ |
| + | if and only if $ P _ {n} ( A) \rightarrow P ( A) $ |
| + | uniformly over all convex Borel sets $ A $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356063.png" /> be distributions on a metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356064.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356065.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356066.png" /> be a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356067.png" />-almost-everywhere measurable mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356068.png" /> into a metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356069.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356070.png" />, where for any distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356071.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356072.png" />, the distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356073.png" /> is its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356074.png" />-image on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356075.png" />: | + | Let $ P _ {n} $, |
| + | $ P $ |
| + | be distributions on a metric space $ S $ |
| + | such that $ P _ {n} \Rightarrow P $ |
| + | and let $ h $ |
| + | be a continuous $ P $- |
| + | almost-everywhere measurable mapping of $ S $ |
| + | into a metric space $ S ^ \prime $. |
| + | Then $ P _ {n} h ^ {-} 1 \Rightarrow Ph ^ {-} 1 $, |
| + | where for any distribution $ Q $ |
| + | on $ S $, |
| + | the distribution $ Qh ^ {-} 1 $ |
| + | is its $ h $- |
| + | image on $ S ^ \prime $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356076.png" /></td> </tr></table>
| + | $$ |
| + | Qh ^ {-} 1 ( A) = Q ( h ^ {-} 1 ( A)) |
| + | $$ |
| | | |
− | for any Borel set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356077.png" />. | + | for any Borel set $ A \in S ^ \prime $. |
| | | |
− | A family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356078.png" /> of distributions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356079.png" /> is said to be weakly relatively compact if every sequence of elements of it contains a weakly convergent subsequence. A condition for weak relative compactness is given by Prokhorov's theorem. A family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356080.png" /> is called tight if, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356081.png" />, there is a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356082.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356083.png" />, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356084.png" />. Prokhorov's theorem now states: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356085.png" /> is tight, then it is relatively compact; if, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356086.png" /> is separable and complete, then weak relative compactness of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356087.png" /> implies its tightness. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356088.png" />, a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356089.png" /> of distributions is weakly relatively compact if and only if the family of characteristic functions corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356090.png" /> is equicontinuous at zero. | + | A family $ {\mathcal P} $ |
| + | of distributions on $ S $ |
| + | is said to be weakly relatively compact if every sequence of elements of it contains a weakly convergent subsequence. A condition for weak relative compactness is given by Prokhorov's theorem. A family $ {\mathcal P} $ |
| + | is called tight if, for any $ \epsilon > 0 $, |
| + | there is a compact set $ K \subset S $ |
| + | such that $ P ( K) > 1 - \epsilon $, |
| + | for all $ P \in {\mathcal P} $. |
| + | Prokhorov's theorem now states: If $ {\mathcal P} $ |
| + | is tight, then it is relatively compact; if, moreover, $ S $ |
| + | is separable and complete, then weak relative compactness of $ {\mathcal P} $ |
| + | implies its tightness. In the case when $ S = \mathbf R ^ {k} $, |
| + | a family $ {\mathcal P} $ |
| + | of distributions is weakly relatively compact if and only if the family of characteristic functions corresponding to $ {\mathcal P} $ |
| + | is equicontinuous at zero. |
| | | |
− | Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356091.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356092.png" /> be distributions on a measure space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356093.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356094.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356095.png" />-algebra. Convergence in variation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356096.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356097.png" /> means uniform convergence on all sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356098.png" /> or, equivalently, convergence on all sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d03356099.png" /> or, equivalently, convergence of the variation | + | Now let $ P _ {n} $, |
| + | $ P $ |
| + | be distributions on a measure space $ ( X, A) $, |
| + | where $ A $ |
| + | is a $ \sigma $- |
| + | algebra. Convergence in variation of $ P _ {n} $ |
| + | to $ P $ |
| + | means uniform convergence on all sets in $ A $ |
| + | or, equivalently, convergence on all sets in $ A $ |
| + | or, equivalently, convergence of the variation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d033560100.png" /></td> </tr></table>
| + | $$ |
| + | | P _ {n} - P | = \ |
| + | ( P _ {n} - P) ^ {+} + |
| + | ( P _ {n} - P) ^ {-} |
| + | $$ |
| | | |
− | to zero. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d033560101.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d033560102.png" /> are the components in the Jordan–Hahn decomposition of the signed measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033560/d033560103.png" />. | + | to zero. Here, $ ( P _ {n} - P) ^ {+} $ |
| + | and $ ( P _ {n} - P) ^ {-} $ |
| + | are the components in the Jordan–Hahn decomposition of the signed measure $ P _ {n} - P $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Billingsley, "Convergence of probability measures" , Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Loève, "Probability theory" , Princeton Univ. Press (1963) {{MR|0203748}} {{ZBL|0108.14202}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> R.N. Bhattacharya, R. Ranga Rao, "Normal approximations and asymptotic expansions" , Wiley (1976) {{MR|0436272}} {{ZBL|}} </TD></TR></table>
| + | {| |
− | | + | |valign="top"|{{Ref|B}}|| P. Billingsley, "Convergence of probability measures" , Wiley (1968) {{MR|0233396}} {{ZBL|0172.21201}} |
− | | + | |- |
| + | |valign="top"|{{Ref|L}}|| M. Loève, "Probability theory" , Princeton Univ. Press (1963) {{MR|0203748}} {{ZBL|0108.14202}} |
| + | |- |
| + | |valign="top"|{{Ref|BR}}|| R.N. Bhattacharya, R. Ranga Rao, "Normal approximations and asymptotic expansions" , Wiley (1976) {{MR|0436272}} {{ZBL|}} |
| + | |} |
| | | |
| ====Comments==== | | ====Comments==== |
| For more information on weak convergence see [[Weak convergence of probability measures|Weak convergence of probability measures]]; [[Convergence of measures|Convergence of measures]]. | | For more information on weak convergence see [[Weak convergence of probability measures|Weak convergence of probability measures]]; [[Convergence of measures|Convergence of measures]]. |
2020 Mathematics Subject Classification: Primary: 60B10 [MSN][ZBL]
Weak convergence or convergence in variation, and defined as follows. A sequence of distributions (probability measures) $ \{ P _ {n} \} $
on the Borel sets of a metric space $ S $
is called weakly convergent to a distribution $ P $
if
$$ \tag{* }
\lim\limits _ { n } \int\limits _ { S } f dP _ {n} = \int\limits _ { S } f dP
$$
for any real-valued bounded continuous function $ f $
on $ S $.
Weak convergence is a basic type of convergence considered in probability theory. It is usually denoted by the sign $ \Rightarrow $.
The following conditions are equivalent to weak convergence:
1) (*) holds for any bounded uniformly-continuous real-valued function $ f $;
2) (*) holds for any bounded $ P $-
almost-everywhere continuous real-valued function $ f $;
3) $ \lim\limits _ {n} \sup P _ {n} ( F) \leq P ( F) $
for any closed set $ F \subset S $;
4) $ \lim\limits _ {n} \inf P _ {n} ( G) \geq P ( G) $
for any open set $ G \subset S $;
5) $ \lim\limits _ {n} P _ {n} ( A) = P ( A) $
for any Borel set $ A \subset S $
with $ P ( \partial A) = 0 $,
where $ \partial A $
is the boundary of $ A $;
6) $ \lim\limits _ {n} p ( P _ {n} , P) = 0 $,
where $ p $
is the Lévy–Prokhorov metric.
Let $ U $
be a class of subsets of $ S $,
closed under intersection and such that every open set in $ S $
is a finite or countable union of sets in $ U $.
Then if $ \lim\limits _ {n} P _ {n} ( A) = P ( A) $
for all $ A \in U $,
it follows that $ P _ {n} \Rightarrow P $.
If $ S = \mathbf R ^ {k} $
and $ F _ {n} $,
$ F $
are the distribution functions corresponding to $ P _ {n} $,
$ P $
respectively, then $ P _ {n} \Rightarrow P $
if and only if $ F _ {n} ( x) \rightarrow F ( x) $
at every point $ x $
where $ F $
is continuous.
Let $ S $
be a separable space and let $ {\mathcal F} $
be the class of real-valued bounded Borel functions on $ S $.
To have $ \int _ {S} f dP _ {n} \rightarrow \int _ {S} f dP $
uniformly over $ f \in {\mathcal F} $
for every sequence $ \{ P _ {n} \} $
such that $ P _ {n} \Rightarrow P $,
it is necessary and sufficient that:
a)
$$
\sup _ {f \in F } \omega _ {f} ( S) < \infty ,
$$
b)
$$
\lim\limits _ {\epsilon \downarrow 0 } \sup _ {f \in {\mathcal F} } \
P ( \{ {x } : {\omega _ {f} ( S _ {x, \epsilon } ) > \delta } \}
) = 0 \ \
\textrm{ for } \textrm{ all } \delta > 0,
$$
where
$$
\omega _ {f} ( A) = \
\sup \
\{ {| f ( x) - f ( y) | } : {x, y \in A } \}
$$
and $ S _ {x, \epsilon } $
is the open ball of radius $ \epsilon $
with centre $ x $.
If the class $ {\mathcal F} $
is generated by the indicator functions of sets from some class $ E $,
then conditions a) and b) lead to the condition
$$
\lim\limits _ {\epsilon \downarrow 0 } \
\sup _ {A \in E } \
P ( A ^ \epsilon \setminus
A ^ {- \epsilon } ) = 0,
$$
where
$$
A ^ \epsilon = \
\cup _ {x \in A }
S _ {x, \epsilon } ,\ \
A ^ {- \epsilon } = \
S \setminus ( S \setminus A) ^ \epsilon
$$
(when each open ball in $ S $
is connected, $ A ^ \epsilon \setminus A ^ {- \epsilon } = ( \partial A) ^ \epsilon $).
If $ S = \mathbf R ^ {k} $
and the distribution $ P $
is absolutely continuous with respect to Lebesgue measure, then $ P _ {n} \Rightarrow P $
if and only if $ P _ {n} ( A) \rightarrow P ( A) $
uniformly over all convex Borel sets $ A $.
Let $ P _ {n} $,
$ P $
be distributions on a metric space $ S $
such that $ P _ {n} \Rightarrow P $
and let $ h $
be a continuous $ P $-
almost-everywhere measurable mapping of $ S $
into a metric space $ S ^ \prime $.
Then $ P _ {n} h ^ {-} 1 \Rightarrow Ph ^ {-} 1 $,
where for any distribution $ Q $
on $ S $,
the distribution $ Qh ^ {-} 1 $
is its $ h $-
image on $ S ^ \prime $:
$$
Qh ^ {-} 1 ( A) = Q ( h ^ {-} 1 ( A))
$$
for any Borel set $ A \in S ^ \prime $.
A family $ {\mathcal P} $
of distributions on $ S $
is said to be weakly relatively compact if every sequence of elements of it contains a weakly convergent subsequence. A condition for weak relative compactness is given by Prokhorov's theorem. A family $ {\mathcal P} $
is called tight if, for any $ \epsilon > 0 $,
there is a compact set $ K \subset S $
such that $ P ( K) > 1 - \epsilon $,
for all $ P \in {\mathcal P} $.
Prokhorov's theorem now states: If $ {\mathcal P} $
is tight, then it is relatively compact; if, moreover, $ S $
is separable and complete, then weak relative compactness of $ {\mathcal P} $
implies its tightness. In the case when $ S = \mathbf R ^ {k} $,
a family $ {\mathcal P} $
of distributions is weakly relatively compact if and only if the family of characteristic functions corresponding to $ {\mathcal P} $
is equicontinuous at zero.
Now let $ P _ {n} $,
$ P $
be distributions on a measure space $ ( X, A) $,
where $ A $
is a $ \sigma $-
algebra. Convergence in variation of $ P _ {n} $
to $ P $
means uniform convergence on all sets in $ A $
or, equivalently, convergence on all sets in $ A $
or, equivalently, convergence of the variation
$$
| P _ {n} - P | = \
( P _ {n} - P) ^ {+} +
( P _ {n} - P) ^ {-}
$$
to zero. Here, $ ( P _ {n} - P) ^ {+} $
and $ ( P _ {n} - P) ^ {-} $
are the components in the Jordan–Hahn decomposition of the signed measure $ P _ {n} - P $.
References
[B] |
P. Billingsley, "Convergence of probability measures" , Wiley (1968) MR0233396 Zbl 0172.21201
|
[L] |
M. Loève, "Probability theory" , Princeton Univ. Press (1963) MR0203748 Zbl 0108.14202
|
[BR] |
R.N. Bhattacharya, R. Ranga Rao, "Normal approximations and asymptotic expansions" , Wiley (1976) MR0436272
|
For more information on weak convergence see Weak convergence of probability measures; Convergence of measures.