Namespaces
Variants
Actions

Difference between revisions of "Distortion theorems"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
d0334602.png
 +
$#A+1 = 123 n = 0
 +
$#C+1 = 123 : ~/encyclopedia/old_files/data/D033/D.0303460 Distortion theorems
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''under conformal mapping of planar domains''
 
''under conformal mapping of planar domains''
  
Theorems characterizing the distortion of line elements at a given point of a domain, as well as the distortion of the domain and its subsets, and the distortion of the boundary of the domain under a [[Conformal mapping|conformal mapping]]. Estimates of the modulus of the derivatives of an analytic function at a point of a domain belong first of all to distortion theorems. The statement, for functions in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d0334602.png" /> of functions
+
Theorems characterizing the distortion of line elements at a given point of a domain, as well as the distortion of the domain and its subsets, and the distortion of the boundary of the domain under a [[Conformal mapping|conformal mapping]]. Estimates of the modulus of the derivatives of an analytic function at a point of a domain belong first of all to distortion theorems. The statement, for functions in the class $  \Sigma $
 +
of functions
 +
 
 +
$$
 +
F ( \zeta )  = \zeta +
 +
\alpha _ {0} +
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d0334603.png" /></td> </tr></table>
+
\frac{\alpha _ {1} } \zeta
 +
+ \dots ,
 +
$$
  
meromorphic and univalent in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d0334604.png" />, that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d0334605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d0334606.png" />, the inequality
+
meromorphic and univalent in $  | \zeta | > 1 $,  
 +
that for all $  \zeta _ {0} $,  
 +
$  1 < | \zeta _ {0} | < \infty $,  
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d0334607.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
1 -  
 +
\frac{1}{| \zeta _ {0} |  ^ {2} }
 +
 
 +
\leq  | F ^ { \prime } ( \zeta _ {0} ) |  \leq  \
 +
 
 +
\frac{| \zeta _ {0} |  ^ {2} }{| \zeta _ {0} |  ^ {2} - 1 }
 +
 
 +
$$
  
 
holds, is a distortion theorem.
 
holds, is a distortion theorem.
Line 13: Line 43:
 
Equality at the left-hand side of (1) holds only for the functions
 
Equality at the left-hand side of (1) holds only for the functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d0334608.png" /></td> </tr></table>
+
$$
 +
F _ {1} ( \zeta )  = \zeta +
 +
\alpha _ {0} + \zeta _ {0} ( \overline \zeta \; _ {0} \zeta )  ^ {-} 1 ,
 +
$$
  
 
while at the right-hand side equality holds only for the functions
 
while at the right-hand side equality holds only for the functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d0334609.png" /></td> </tr></table>
+
$$
 +
F _ {2} ( \zeta )  = \
 +
 
 +
\frac{\zeta - \zeta _ {0} }{1 - ( \overline \zeta \; _ {0} \zeta )  ^ {-} 1 }
 +
 
 +
+ \beta _ {0} .
 +
$$
 +
 
 +
Here  $  \alpha _ {0} $
 +
and  $  \beta _ {0} $
 +
are two arbitrary fixed numbers. The functions  $  w = F _ {1} ( \zeta ) $
 +
map the domain  $  | \zeta | > 1 $
 +
onto the  $  w $-
 +
plane with slit along the interval connecting the points  $  \alpha _ {0} - 2 \zeta _ {0} / | \zeta _ {0} | $
 +
and  $  \alpha _ {0} + 2 \zeta _ {0} / | \zeta _ {0} | $.  
 +
The functions  $  w = F _ {2} ( \zeta ) $
 +
map the domain  $  | \zeta | > 1 $
 +
onto the  $  w $-
 +
plane with slit along an arc of the circle  $  | w- \beta _ {0} | = | \zeta _ {0} | $
 +
with mid-point  $  \beta _ {0} - \zeta _ {0} $.
 +
Inequality (1) is easily obtained from the Grunsky inequality
 +
 
 +
$$
 +
|  \mathop{\rm ln}  F ^ { \prime } ( \zeta _ {0} ) |  \leq  \
 +
-  \mathop{\rm ln} \
 +
\left ( 1 -
 +
\frac{1}{| \zeta _ {0} |  ^ {2} }
 +
\right ) ,
 +
$$
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346011.png" /> are two arbitrary fixed numbers. The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346012.png" /> map the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346013.png" /> onto the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346014.png" />-plane with slit along the interval connecting the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346016.png" />. The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346017.png" /> map the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346018.png" /> onto the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346019.png" />-plane with slit along an arc of the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346020.png" /> with mid-point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346021.png" />. Inequality (1) is easily obtained from the Grunsky inequality
+
which determines the range of values of the functional  $  \mathop{\rm ln}  F ^ { \prime } ( \zeta _ {0} ) $
 +
on the class  $  \Sigma $.  
 +
On the other hand, inequality (1) is a direct consequence of Goluzin's theorem: If  $  F ( \zeta ) \in \Sigma $,
 +
then for any two points  $  \zeta _ {1} , \zeta _ {2} $
 +
with $  | \zeta _ {1} | = | \zeta _ {2} | = \rho $,
 +
1 < \rho < \infty $,
 +
the sharp inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346022.png" /></td> </tr></table>
+
$$ \tag{2 }
 +
\left |
 +
\mathop{\rm ln} \
  
which determines the range of values of the functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346023.png" /> on the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346024.png" />. On the other hand, inequality (1) is a direct consequence of Goluzin's theorem: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346025.png" />, then for any two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346026.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346028.png" />, the sharp inequality
+
\frac{F ( \zeta _ {1} ) - F ( \zeta _ {0} ) }{\zeta _ {1} - \zeta _ {2} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
\right |  \leq  -
 +
\mathop{\rm ln} \
 +
\left ( 1 -  
 +
\frac{1}{\rho  ^ {2} }
 +
\right )
 +
$$
  
holds, where, moreover, the equality sign is attained for the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346030.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346031.png" /> is a real constant. Inequality (2) also implies the chord-distortion theorem (cf. [[#References|[1]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346032.png" />, then for any two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346033.png" /> on the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346034.png" /> the sharp inequality
+
holds, where, moreover, the equality sign is attained for the functions $  F ( \zeta ) = \zeta + e ^ {i \alpha } / \zeta $,  
 +
where $  \alpha $
 +
is a real constant. Inequality (2) also implies the chord-distortion theorem (cf. [[#References|[1]]]). If $  F ( \zeta ) \in \Sigma $,  
 +
then for any two points $  \zeta _ {1} , \zeta _ {2} $
 +
on the circle $  | \zeta | = \rho > 1 $
 +
the sharp inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346035.png" /></td> </tr></table>
+
$$
 +
\left |
 +
 
 +
\frac{F ( \zeta _ {1} ) - F ( \zeta _ {2} ) }{\zeta _ {1} - \zeta _ {2} }
 +
\
 +
\right |  \geq  \
 +
1 -
 +
\frac{1}{\rho  ^ {2} }
 +
 
 +
$$
  
 
holds. Equality in this case is only attained for the functions
 
holds. Equality in this case is only attained for the functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346036.png" /></td> </tr></table>
+
$$
 +
F ( \zeta )  = \zeta + C +
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346037.png" /> is a constant and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346038.png" />. Various generalizations of (2) are known. These give the ranges of values of corresponding functionals and are sharpened versions of distortion theorems for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346039.png" /> or its subclasses (cf., e.g., [[#References|[1]]]).
+
\frac{e ^ {2 i \phi } } \zeta
 +
,
 +
$$
  
In the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346040.png" /> of functions
+
where  $  C $
 +
is a constant and  $  \phi = (  \mathop{\rm arg}  \zeta _ {1} +  \mathop{\rm arg}  \zeta _ {2} ) / 2 $.
 +
Various generalizations of (2) are known. These give the ranges of values of corresponding functionals and are sharpened versions of distortion theorems for  $  \Sigma $
 +
or its subclasses (cf., e.g., [[#References|[1]]]).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346041.png" /></td> </tr></table>
+
In the class $  S $
 +
of functions
  
that are regular and univalent in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346042.png" />, the following sharp inequalities are valid for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346043.png" />:
+
$$
 +
f ( z)  = z +
 +
c _ {2} z  ^ {2} + \dots
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346044.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
that are regular and univalent in the disc  $  | z | < 1 $,
 +
the following sharp inequalities are valid for  $  0 < | z _ {0} | < 1 $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346045.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{3 }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346046.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
\frac{1 - | z _ {0} | }{( 1 + | z _ {0} | ) ^ {3} }
  
The estimates (4) and (5) follow from (3). The inequalities (3)–(5) are called the distortion theorems for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346047.png" />. The lower bounds are realized only by the functions
+
\leq  | f ^ { \prime } ( z _ {0} ) |  \leq  \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346048.png" /></td> </tr></table>
+
\frac{1 + | z _ {0} | }{( 1 - | z _ {0} | )  ^ {3} }
 +
,
 +
$$
 +
 
 +
$$ \tag{4 }
 +
 
 +
\frac{| z _ {0} | }{( 1 + | z _ {0} | )
 +
^ {2} }
 +
  \leq  | f ( z _ {0} ) |  \leq 
 +
\frac{| z _ {0} | }{( 1 - | z _ {0} | )  ^ {2} }
 +
,
 +
$$
 +
 
 +
$$ \tag{5 }
 +
 
 +
\frac{1 - | z _ {0} | }{1 + | z _ {0} | }
 +
  \leq  \left |
 +
\frac{z _ {0} f ^ { \prime } ( z _ {0} ) }{f ( z _ {0} ) }
 +
\right |  \leq 
 +
\frac{1
 +
+ | z _ {0} | }{1 - | z _ {0} | }
 +
.
 +
$$
 +
 
 +
The estimates (4) and (5) follow from (3). The inequalities (3)–(5) are called the distortion theorems for  $  S $.  
 +
The lower bounds are realized only by the functions
 +
 
 +
$$
 +
f _  \alpha  ( z)  = \
 +
 
 +
\frac{z}{( 1 + e ^ {- i \alpha } z )  ^ {2} }
 +
,
 +
$$
  
 
while the upper bounds are realized only by the functions
 
while the upper bounds are realized only by the functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346049.png" /></td> </tr></table>
+
$$
 +
f _ {\pi + \alpha }  ( z)  = \
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346050.png" />. The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346052.png" />, known as the Koebe functions, map the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346053.png" /> onto the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346054.png" />-plane with slit along the ray <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346056.png" />. They are extremal in a number of problems in the theory of univalent functions. Koebe's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346058.png" />-theorem holds: The domain that is the image of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346059.png" /> under a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346061.png" />, always contains the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346062.png" />, and the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346063.png" /> lies on the boundary of this domain only for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346064.png" />.
+
\frac{z}{( 1 - e ^ {- i \alpha } z )  ^ {2} }
 +
,
 +
$$
 +
 
 +
where $  \alpha = \mathop{\rm arg}  z _ {0} $.  
 +
The functions $  w = f _  \alpha  ( z) $,
 +
0 \leq  \alpha < 2 \pi $,  
 +
known as the Koebe functions, map the disc $  | z | < 1 $
 +
onto the $  w $-
 +
plane with slit along the ray $  \mathop{\rm arg}  w = \alpha $,  
 +
$  | w | \geq  1 / 4 $.  
 +
They are extremal in a number of problems in the theory of univalent functions. Koebe's $  1 / 4 $-
 +
theorem holds: The domain that is the image of the disc $  | z | < 1 $
 +
under a mapping $  w = f ( z) $,  
 +
$  f \in S $,  
 +
always contains the disc $  | w | < 1 / 4 $,  
 +
and the point $  w = e ^ {i \alpha } / 4 $
 +
lies on the boundary of this domain only for $  f ( z) = f _  \alpha  ( z ) $.
  
 
The estimates (3)–(5) are simple consequences of results on the ranges of the functionals
 
The estimates (3)–(5) are simple consequences of results on the ranges of the functionals
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346065.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm ln}  f ^ { \prime } ( z _ {0} ) ,\ \
 +
\mathop{\rm ln} \
  
on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346066.png" /> (cf. [[#References|[2]]]).
+
\frac{f ( z _ {0} ) }{z _ {0} }
 +
,\ \
 +
\mathop{\rm ln} \
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346067.png" /> be the class of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346068.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346069.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346070.png" />. Between functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346071.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346072.png" /> there is the following relation: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346073.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346074.png" />, and, conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346075.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346076.png" />. Hence, the range of some functional (or system of functionals) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346077.png" /> is determined by the range of the corresponding functional (system of functionals) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346078.png" />, vice versa. E.g., the range of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346079.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346080.png" />, on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346081.png" /> is easily obtained from that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346082.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346083.png" />, on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346084.png" />.
+
\frac{z f ^ { \prime } ( z _ {0} ) }{f ( z _ {0} ) }
  
For functions that are regular and bounded in a disc, the [[Schwarz lemma|Schwarz lemma]] (cf. [[#References|[1]]]) and its generalizations, as well as the following boundary-distortion theorem of Löwner are examples of distortion theorems. Löwner's theorem: For a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346085.png" /> that is regular in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346086.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346087.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346088.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346090.png" /> on an arc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346091.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346092.png" />, the length of the image of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346093.png" /> is not smaller than the length of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346094.png" /> itself, and equality only holds for the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346095.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346096.png" /> a real number.
+
$$
  
In the class of functions that are univalent in a given multiply-connected domain, the minimum (respectively, maximum) modulus of the derivative at a given point of the domain is attained only for mappings of this domain onto a domain with radial (resp. circular concentric) slits. For unbounded mappings the following theorem holds: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346097.png" /> be a finitely-connected domain in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346098.png" />-plane containing the point at infinity, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d03346099.png" /> be the class of univalent functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460100.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460101.png" /> that have in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460102.png" /> the expansion
+
on  $  S $(
 +
cf. [[#References|[2]]]).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460103.png" /></td> </tr></table>
+
Let  $  \Sigma _ {0} $
 +
be the class of functions  $  F ( \zeta ) \in \Sigma $
 +
with  $  F ( \zeta ) \neq 0 $
 +
for  $  1 < | \zeta | < \infty $.
 +
Between functions in  $  S $
 +
and  $  \Sigma _ {0} $
 +
there is the following relation: If  $  f ( z) \in S $,
 +
then  $  F ( \zeta ) = 1 / f ( 1 / \zeta ) \in \Sigma _ {0} $,
 +
and, conversely, if  $  F ( \zeta ) \in \Sigma _ {0} $,
 +
then  $  f ( z) = 1 / F ( 1 / z ) \in S $.
 +
Hence, the range of some functional (or system of functionals) on  $  S $
 +
is determined by the range of the corresponding functional (system of functionals) on  $  \Sigma _ {0} $,
 +
vice versa. E.g., the range of  $  \mathop{\rm ln}  f ( z _ {0} ) / z _ {0} $,
 +
$  0 < | z _ {0} | < 1 $,
 +
on  $  S $
 +
is easily obtained from that of  $  \mathop{\rm ln}  F ( \zeta _ {0} ) / \zeta _ {0} $,
 +
$  1 < | \zeta _ {0} | < \infty $,
 +
on  $  \Sigma _ {0} $.
  
and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460104.png" /> be a point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460105.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460107.png" />, be a function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460108.png" /> mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460109.png" /> onto the plane with slits along the arcs of the logarithmic spirals that make an angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460110.png" /> with rays emanating from the origin (it is a sufficient to take <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460111.png" />; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460112.png" /> the logarithmic spiral degenerates into a ray emanating from the origin, while for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460113.png" /> it degenerates into a circle with centre at the origin). Let
+
For functions that are regular and bounded in a disc, the [[Schwarz lemma|Schwarz lemma]] (cf. [[#References|[1]]]) and its generalizations, as well as the following boundary-distortion theorem of Löwner are examples of distortion theorems. Löwner's theorem: For a function  $  \phi ( z) $
 +
that is regular in $  | z | < 1 $
 +
with  $  \phi ( 0) = 0 $,  
 +
$  | \phi ( z) | < 1 $
 +
in $  | z | < 1 $
 +
and  $  | \phi ( z) | = 1 $
 +
on an arc  $  A $
 +
of  $  | z | = 1 $,
 +
the length of the image of $  A $
 +
is not smaller than the length of  $  A $
 +
itself, and equality only holds for the functions  $  \phi ( z) = e ^ {i \alpha } z $,  
 +
with  $  \alpha $
 +
a real number.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460114.png" /></td> </tr></table>
+
In the class of functions that are univalent in a given multiply-connected domain, the minimum (respectively, maximum) modulus of the derivative at a given point of the domain is attained only for mappings of this domain onto a domain with radial (resp. circular concentric) slits. For unbounded mappings the following theorem holds: Let  $  D $
 +
be a finitely-connected domain in the  $  \zeta $-
 +
plane containing the point at infinity, let  $  \Sigma ( D) $
 +
be the class of univalent functions  $  F ( \zeta ) $
 +
in  $  D $
 +
that have in a neighbourhood of  $  \zeta = \infty $
 +
the expansion
  
where those branches of the square root are taken that give first coefficients 1 in the Laurent expansions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460115.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460116.png" /> in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460117.png" />. Then the range of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460118.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460119.png" /> is the disc defined by
+
$$
 +
F ( \zeta )  = \zeta
 +
+ \alpha _ {0} +
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460120.png" /></td> </tr></table>
+
\frac{\alpha _ {1} } \zeta
  
where to each boundary point only the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460121.png" /> with suitable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460122.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460123.png" /> a constant, correspond. In particular, one has the sharp inequalities
+
+ \dots ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460124.png" /></td> </tr></table>
+
and let  $  \zeta _ {0} \neq \infty $
 +
be a point in  $  D $.
 +
Let  $  F _  \theta  ( \zeta ) $,
 +
$  F _  \theta  ( \zeta _ {0} ) = 0 $,
 +
be a function in  $  \Sigma ( D) $
 +
mapping  $  D $
 +
onto the plane with slits along the arcs of the logarithmic spirals that make an angle  $  \theta $
 +
with rays emanating from the origin (it is a sufficient to take  $  - \pi / 2 \leq  \theta \leq  \pi / 2 $;  
 +
for  $  \theta = 0 $
 +
the logarithmic spiral degenerates into a ray emanating from the origin, while for  $  \theta = \pm  \pi / 2 $
 +
it degenerates into a circle with centre at the origin). Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033460/d033460125.png" /></td> </tr></table>
+
$$
 +
p ( \zeta )  = \
 +
\sqrt {F _ {0} ( \zeta ) F _ {\pi / 2 }  ( \zeta ) } ,\ \
 +
q ( \zeta )  = \
 +
\sqrt {
 +
\frac{F _ {0} ( \zeta ) }{F _ {\pi / 2 }  ( \zeta ) }
 +
} ,
 +
$$
 +
 
 +
where those branches of the square root are taken that give first coefficients 1 in the Laurent expansions of  $  p ( \zeta ) $
 +
and  $  q ( \zeta ) $
 +
in a neighbourhood of  $  \zeta = \infty $.
 +
Then the range of  $  \mathop{\rm ln}  F ^ { \prime } ( \zeta _ {0} ) $
 +
on  $  \Sigma ( D) $
 +
is the disc defined by
 +
 
 +
$$
 +
|  \mathop{\rm ln}  F ^ { \prime } ( \zeta _ {0} ) -
 +
\mathop{\rm ln}  p  ^  \prime  ( \zeta _ {0} ) |  \leq  \
 +
- \mathop{\rm ln}  q ( \zeta _ {0} ) ,
 +
$$
 +
 
 +
where to each boundary point only the functions  $  F ( \zeta ) = F _  \theta  ( \zeta ) + C $
 +
with suitable  $  \theta $,
 +
and  $  C $
 +
a constant, correspond. In particular, one has the sharp inequalities
 +
 
 +
$$
 +
| F _ {0} ^ { \prime } ( \zeta _ {0} ) |  \leq  \
 +
| F ^ { \prime } ( \zeta _ {0} ) |  \leq  \
 +
| F _ {\pi / 2 }  ^ { \prime } ( \zeta _ {0} ) | ,
 +
$$
 +
 
 +
$$
 +
\mathop{\rm arg}  F _ {\pi / 4 }  ^ { \prime } ( \zeta _ {0} )  \leq    \mathop{\rm arg}  F ^ { \prime } ( \zeta _ {0} )  \leq  \
 +
\mathop{\rm arg}  F _ {- \pi / 4 }  ^ { \prime } ( \zeta _ {0} ) ,
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.A. Jenkins,  "Univalent functions and conformal mapping" , Springer  (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.V. Chernikov,  "Extremal properties of univalent conformal mappings" , ''Results of investigation in mathematics and mechanics during 50 years: 1917–1967'' , Tomsk  (1967)  pp. 23–51  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.E. Bazilevich,  , ''Mathematics in the USSR during 40 years: 1917–1957'' , '''1''' , Moscow  (1959)  pp. 444–472  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P.P. Belinskii,  "General properties of quasi-conformal mappings" , Novosibirsk  (1974)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  R. Kühnau,  "Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen"  ''Math. Nachrichten'' , '''48'''  (1971)  pp. 77–105</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.A. Jenkins,  "Univalent functions and conformal mapping" , Springer  (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.V. Chernikov,  "Extremal properties of univalent conformal mappings" , ''Results of investigation in mathematics and mechanics during 50 years: 1917–1967'' , Tomsk  (1967)  pp. 23–51  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.E. Bazilevich,  , ''Mathematics in the USSR during 40 years: 1917–1957'' , '''1''' , Moscow  (1959)  pp. 444–472  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P.P. Belinskii,  "General properties of quasi-conformal mappings" , Novosibirsk  (1974)  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  R. Kühnau,  "Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen"  ''Math. Nachrichten'' , '''48'''  (1971)  pp. 77–105</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 19:36, 5 June 2020


under conformal mapping of planar domains

Theorems characterizing the distortion of line elements at a given point of a domain, as well as the distortion of the domain and its subsets, and the distortion of the boundary of the domain under a conformal mapping. Estimates of the modulus of the derivatives of an analytic function at a point of a domain belong first of all to distortion theorems. The statement, for functions in the class $ \Sigma $ of functions

$$ F ( \zeta ) = \zeta + \alpha _ {0} + \frac{\alpha _ {1} } \zeta + \dots , $$

meromorphic and univalent in $ | \zeta | > 1 $, that for all $ \zeta _ {0} $, $ 1 < | \zeta _ {0} | < \infty $, the inequality

$$ \tag{1 } 1 - \frac{1}{| \zeta _ {0} | ^ {2} } \leq | F ^ { \prime } ( \zeta _ {0} ) | \leq \ \frac{| \zeta _ {0} | ^ {2} }{| \zeta _ {0} | ^ {2} - 1 } $$

holds, is a distortion theorem.

Equality at the left-hand side of (1) holds only for the functions

$$ F _ {1} ( \zeta ) = \zeta + \alpha _ {0} + \zeta _ {0} ( \overline \zeta \; _ {0} \zeta ) ^ {-} 1 , $$

while at the right-hand side equality holds only for the functions

$$ F _ {2} ( \zeta ) = \ \frac{\zeta - \zeta _ {0} }{1 - ( \overline \zeta \; _ {0} \zeta ) ^ {-} 1 } + \beta _ {0} . $$

Here $ \alpha _ {0} $ and $ \beta _ {0} $ are two arbitrary fixed numbers. The functions $ w = F _ {1} ( \zeta ) $ map the domain $ | \zeta | > 1 $ onto the $ w $- plane with slit along the interval connecting the points $ \alpha _ {0} - 2 \zeta _ {0} / | \zeta _ {0} | $ and $ \alpha _ {0} + 2 \zeta _ {0} / | \zeta _ {0} | $. The functions $ w = F _ {2} ( \zeta ) $ map the domain $ | \zeta | > 1 $ onto the $ w $- plane with slit along an arc of the circle $ | w- \beta _ {0} | = | \zeta _ {0} | $ with mid-point $ \beta _ {0} - \zeta _ {0} $. Inequality (1) is easily obtained from the Grunsky inequality

$$ | \mathop{\rm ln} F ^ { \prime } ( \zeta _ {0} ) | \leq \ - \mathop{\rm ln} \ \left ( 1 - \frac{1}{| \zeta _ {0} | ^ {2} } \right ) , $$

which determines the range of values of the functional $ \mathop{\rm ln} F ^ { \prime } ( \zeta _ {0} ) $ on the class $ \Sigma $. On the other hand, inequality (1) is a direct consequence of Goluzin's theorem: If $ F ( \zeta ) \in \Sigma $, then for any two points $ \zeta _ {1} , \zeta _ {2} $ with $ | \zeta _ {1} | = | \zeta _ {2} | = \rho $, $ 1 < \rho < \infty $, the sharp inequality

$$ \tag{2 } \left | \mathop{\rm ln} \ \frac{F ( \zeta _ {1} ) - F ( \zeta _ {0} ) }{\zeta _ {1} - \zeta _ {2} } \right | \leq - \mathop{\rm ln} \ \left ( 1 - \frac{1}{\rho ^ {2} } \right ) $$

holds, where, moreover, the equality sign is attained for the functions $ F ( \zeta ) = \zeta + e ^ {i \alpha } / \zeta $, where $ \alpha $ is a real constant. Inequality (2) also implies the chord-distortion theorem (cf. [1]). If $ F ( \zeta ) \in \Sigma $, then for any two points $ \zeta _ {1} , \zeta _ {2} $ on the circle $ | \zeta | = \rho > 1 $ the sharp inequality

$$ \left | \frac{F ( \zeta _ {1} ) - F ( \zeta _ {2} ) }{\zeta _ {1} - \zeta _ {2} } \ \right | \geq \ 1 - \frac{1}{\rho ^ {2} } $$

holds. Equality in this case is only attained for the functions

$$ F ( \zeta ) = \zeta + C + \frac{e ^ {2 i \phi } } \zeta , $$

where $ C $ is a constant and $ \phi = ( \mathop{\rm arg} \zeta _ {1} + \mathop{\rm arg} \zeta _ {2} ) / 2 $. Various generalizations of (2) are known. These give the ranges of values of corresponding functionals and are sharpened versions of distortion theorems for $ \Sigma $ or its subclasses (cf., e.g., [1]).

In the class $ S $ of functions

$$ f ( z) = z + c _ {2} z ^ {2} + \dots $$

that are regular and univalent in the disc $ | z | < 1 $, the following sharp inequalities are valid for $ 0 < | z _ {0} | < 1 $:

$$ \tag{3 } \frac{1 - | z _ {0} | }{( 1 + | z _ {0} | ) ^ {3} } \leq | f ^ { \prime } ( z _ {0} ) | \leq \ \frac{1 + | z _ {0} | }{( 1 - | z _ {0} | ) ^ {3} } , $$

$$ \tag{4 } \frac{| z _ {0} | }{( 1 + | z _ {0} | ) ^ {2} } \leq | f ( z _ {0} ) | \leq \frac{| z _ {0} | }{( 1 - | z _ {0} | ) ^ {2} } , $$

$$ \tag{5 } \frac{1 - | z _ {0} | }{1 + | z _ {0} | } \leq \left | \frac{z _ {0} f ^ { \prime } ( z _ {0} ) }{f ( z _ {0} ) } \right | \leq \frac{1 + | z _ {0} | }{1 - | z _ {0} | } . $$

The estimates (4) and (5) follow from (3). The inequalities (3)–(5) are called the distortion theorems for $ S $. The lower bounds are realized only by the functions

$$ f _ \alpha ( z) = \ \frac{z}{( 1 + e ^ {- i \alpha } z ) ^ {2} } , $$

while the upper bounds are realized only by the functions

$$ f _ {\pi + \alpha } ( z) = \ \frac{z}{( 1 - e ^ {- i \alpha } z ) ^ {2} } , $$

where $ \alpha = \mathop{\rm arg} z _ {0} $. The functions $ w = f _ \alpha ( z) $, $ 0 \leq \alpha < 2 \pi $, known as the Koebe functions, map the disc $ | z | < 1 $ onto the $ w $- plane with slit along the ray $ \mathop{\rm arg} w = \alpha $, $ | w | \geq 1 / 4 $. They are extremal in a number of problems in the theory of univalent functions. Koebe's $ 1 / 4 $- theorem holds: The domain that is the image of the disc $ | z | < 1 $ under a mapping $ w = f ( z) $, $ f \in S $, always contains the disc $ | w | < 1 / 4 $, and the point $ w = e ^ {i \alpha } / 4 $ lies on the boundary of this domain only for $ f ( z) = f _ \alpha ( z ) $.

The estimates (3)–(5) are simple consequences of results on the ranges of the functionals

$$ \mathop{\rm ln} f ^ { \prime } ( z _ {0} ) ,\ \ \mathop{\rm ln} \ \frac{f ( z _ {0} ) }{z _ {0} } ,\ \ \mathop{\rm ln} \ \frac{z f ^ { \prime } ( z _ {0} ) }{f ( z _ {0} ) } $$

on $ S $( cf. [2]).

Let $ \Sigma _ {0} $ be the class of functions $ F ( \zeta ) \in \Sigma $ with $ F ( \zeta ) \neq 0 $ for $ 1 < | \zeta | < \infty $. Between functions in $ S $ and $ \Sigma _ {0} $ there is the following relation: If $ f ( z) \in S $, then $ F ( \zeta ) = 1 / f ( 1 / \zeta ) \in \Sigma _ {0} $, and, conversely, if $ F ( \zeta ) \in \Sigma _ {0} $, then $ f ( z) = 1 / F ( 1 / z ) \in S $. Hence, the range of some functional (or system of functionals) on $ S $ is determined by the range of the corresponding functional (system of functionals) on $ \Sigma _ {0} $, vice versa. E.g., the range of $ \mathop{\rm ln} f ( z _ {0} ) / z _ {0} $, $ 0 < | z _ {0} | < 1 $, on $ S $ is easily obtained from that of $ \mathop{\rm ln} F ( \zeta _ {0} ) / \zeta _ {0} $, $ 1 < | \zeta _ {0} | < \infty $, on $ \Sigma _ {0} $.

For functions that are regular and bounded in a disc, the Schwarz lemma (cf. [1]) and its generalizations, as well as the following boundary-distortion theorem of Löwner are examples of distortion theorems. Löwner's theorem: For a function $ \phi ( z) $ that is regular in $ | z | < 1 $ with $ \phi ( 0) = 0 $, $ | \phi ( z) | < 1 $ in $ | z | < 1 $ and $ | \phi ( z) | = 1 $ on an arc $ A $ of $ | z | = 1 $, the length of the image of $ A $ is not smaller than the length of $ A $ itself, and equality only holds for the functions $ \phi ( z) = e ^ {i \alpha } z $, with $ \alpha $ a real number.

In the class of functions that are univalent in a given multiply-connected domain, the minimum (respectively, maximum) modulus of the derivative at a given point of the domain is attained only for mappings of this domain onto a domain with radial (resp. circular concentric) slits. For unbounded mappings the following theorem holds: Let $ D $ be a finitely-connected domain in the $ \zeta $- plane containing the point at infinity, let $ \Sigma ( D) $ be the class of univalent functions $ F ( \zeta ) $ in $ D $ that have in a neighbourhood of $ \zeta = \infty $ the expansion

$$ F ( \zeta ) = \zeta + \alpha _ {0} + \frac{\alpha _ {1} } \zeta + \dots , $$

and let $ \zeta _ {0} \neq \infty $ be a point in $ D $. Let $ F _ \theta ( \zeta ) $, $ F _ \theta ( \zeta _ {0} ) = 0 $, be a function in $ \Sigma ( D) $ mapping $ D $ onto the plane with slits along the arcs of the logarithmic spirals that make an angle $ \theta $ with rays emanating from the origin (it is a sufficient to take $ - \pi / 2 \leq \theta \leq \pi / 2 $; for $ \theta = 0 $ the logarithmic spiral degenerates into a ray emanating from the origin, while for $ \theta = \pm \pi / 2 $ it degenerates into a circle with centre at the origin). Let

$$ p ( \zeta ) = \ \sqrt {F _ {0} ( \zeta ) F _ {\pi / 2 } ( \zeta ) } ,\ \ q ( \zeta ) = \ \sqrt { \frac{F _ {0} ( \zeta ) }{F _ {\pi / 2 } ( \zeta ) } } , $$

where those branches of the square root are taken that give first coefficients 1 in the Laurent expansions of $ p ( \zeta ) $ and $ q ( \zeta ) $ in a neighbourhood of $ \zeta = \infty $. Then the range of $ \mathop{\rm ln} F ^ { \prime } ( \zeta _ {0} ) $ on $ \Sigma ( D) $ is the disc defined by

$$ | \mathop{\rm ln} F ^ { \prime } ( \zeta _ {0} ) - \mathop{\rm ln} p ^ \prime ( \zeta _ {0} ) | \leq \ - \mathop{\rm ln} q ( \zeta _ {0} ) , $$

where to each boundary point only the functions $ F ( \zeta ) = F _ \theta ( \zeta ) + C $ with suitable $ \theta $, and $ C $ a constant, correspond. In particular, one has the sharp inequalities

$$ | F _ {0} ^ { \prime } ( \zeta _ {0} ) | \leq \ | F ^ { \prime } ( \zeta _ {0} ) | \leq \ | F _ {\pi / 2 } ^ { \prime } ( \zeta _ {0} ) | , $$

$$ \mathop{\rm arg} F _ {\pi / 4 } ^ { \prime } ( \zeta _ {0} ) \leq \mathop{\rm arg} F ^ { \prime } ( \zeta _ {0} ) \leq \ \mathop{\rm arg} F _ {- \pi / 4 } ^ { \prime } ( \zeta _ {0} ) , $$

References

[1] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
[2] J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)
[3] V.V. Chernikov, "Extremal properties of univalent conformal mappings" , Results of investigation in mathematics and mechanics during 50 years: 1917–1967 , Tomsk (1967) pp. 23–51 (In Russian)
[4] I.E. Bazilevich, , Mathematics in the USSR during 40 years: 1917–1957 , 1 , Moscow (1959) pp. 444–472 (In Russian)
[5] P.P. Belinskii, "General properties of quasi-conformal mappings" , Novosibirsk (1974) (In Russian)
[6] R. Kühnau, "Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen" Math. Nachrichten , 48 (1971) pp. 77–105

Comments

Other distortion theorems are, e.g., Landau's theorems (cf. Landau theorems), Bloch's theorem (cf. Bloch constant) and the Pick theorem.

References

[a1] P.L. Duren, "Univalent functions" , Springer (1983) pp. Chapt. 3
[a2] C. Pommerenke, "Univalent functions" , Vandenhoeck & Ruprecht (1975)
How to Cite This Entry:
Distortion theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Distortion_theorems&oldid=14492
This article was adapted from an original article by E.G. Goluzina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article