Namespaces
Variants
Actions

Difference between revisions of "Dissipative function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
d0334201.png
 +
$#A+1 = 16 n = 0
 +
$#C+1 = 16 : ~/encyclopedia/old_files/data/D033/D.0303420 Dissipative function,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''dissipation function''
 
''dissipation function''
  
Line 5: Line 17:
 
The dissipation function for an isotropic medium, referred to unit volume, has the form
 
The dissipation function for an isotropic medium, referred to unit volume, has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334201.png" /></td> </tr></table>
+
$$
 +
\Phi  =
 +
\frac{M}{2}
 +
\sum _ {i = 1 } ^ { 3 }  \sum _ {k = 1 } ^ { 3 }
 +
\left (
 +
\frac{\partial  v _ {i} }{\partial  x _ {k} }
 +
+
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334202.png" /> are the components of the tensor of the deformation rates and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334203.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334204.png" /> are the viscosity coefficients which describe the viscosity during motion and the viscosity during volume expansion, respectively.
+
\frac{\partial  v _ {k} }{\partial  x _ {i} }
 +
\right )  ^ {2}
 +
+ \left ( \eta -
 +
\frac{2}{3}
 +
\mu \right ) \sum _ {m = 1 } ^ { 3 }
 +
\left (
 +
\frac{\partial  v _ {m} }{\partial  x _ {m} }
 +
\right )  ^ {2} ,
 +
$$
 +
 
 +
where $  \partial  v _ {i} / \partial  x _ {k} $
 +
are the components of the tensor of the deformation rates and $  \mu $
 +
and $  \eta $
 +
are the viscosity coefficients which describe the viscosity during motion and the viscosity during volume expansion, respectively.
  
 
The equation of change of entropy in a viscous medium has the form:
 
The equation of change of entropy in a viscous medium has the form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334205.png" /></td> </tr></table>
+
$$
 +
\rho T
 +
\frac{dS}{dt}
 +
  = \Phi ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334206.png" /> is the specific entropy, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334207.png" /> is the density and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334208.png" /> is the temperature of the liquid.
+
where $  S $
 +
is the specific entropy, $  \rho $
 +
is the density and $  T $
 +
is the temperature of the liquid.
  
 
The dissipation function is a characterization of the viscous forces during the motion of a continuous medium. The equation of motion of a viscous medium is
 
The dissipation function is a characterization of the viscous forces during the motion of a continuous medium. The equation of motion of a viscous medium is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d0334209.png" /></td> </tr></table>
+
$$
 +
\rho
 +
\frac{d v _ {i} }{dt }
 +
  =
 +
\frac{\partial  \sigma _ {ik} }{\partial  x _ {k} }
 +
+
 +
\frac{\partial  \sigma _ {ik}  ^  \prime  }{\partial  x _ {k} }
 +
,
 +
$$
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342010.png" /> are the components of the friction-less part of the stress tensor, the
+
where the $  \sigma _ {ik} $
 +
are the components of the friction-less part of the stress tensor, the
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342011.png" /></td> </tr></table>
+
$$
 +
\sigma _ {ik}  ^  \prime  = \mu \left \{ \left (
 +
\frac{\partial  v _ {i} }{\partial  x _ {k} }
 +
+
 +
\frac{\partial  v _ {k} }{\partial  x _ {i} }
 +
\right )
 +
-  
 +
\frac{2}{3}
 +
 +
\frac{\partial  v _ {m} }{\partial  x _ {m} }
 +
\delta _ {ik} \right \}
 +
+ \eta
 +
\frac{\partial  v _ {m} }{\partial  x _ {m} }
 +
\delta _ {ik}  $$
  
 
are the components of the  "viscous"  part of the stress tensor, and
 
are the components of the  "viscous"  part of the stress tensor, and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342012.png" /></td> </tr></table>
+
$$
 +
\Phi  = \sigma _ {ik}
 +
\frac{\partial  v _ {i} }{\partial  x _ {k} }
 +
.
 +
$$
  
 
The dissipation function is employed to allow for the effect of the resistance to small vibrations of the system around its equilibrium position; to study the damping of vibrations in an elastic medium; to allow for heat losses during the damping of electric current vibrations in circuit systems; etc.
 
The dissipation function is employed to allow for the effect of the resistance to small vibrations of the system around its equilibrium position; to study the damping of vibrations in an elastic medium; to allow for heat losses during the damping of electric current vibrations in circuit systems; etc.
Line 31: Line 95:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Fluid mechanics" , Pergamon  (1959)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Fluid mechanics" , Pergamon  (1959)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
For a Newtonian fluid the stress tensor has components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342014.png" /> is the friction-less part (above called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342015.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033420/d03342016.png" /> is the viscous part.
+
For a [[Newtonian fluid]] the stress tensor has components $  t _ {kl} = - \rho \delta _ {kl} + \sigma _ {kl}  ^  \prime  $,  
 +
where $  - \rho \delta _ {kl} $
 +
is the friction-less part (above called $  \sigma _ {kl} $)  
 +
and $  \sigma _ {kl}  ^  \prime  $
 +
is the viscous part.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.J. Pai,  "Viscous flow theory" , '''1. Laminar flow''' , v. Nostrand  (1956)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S.J. Pai,  "Viscous flow theory" , '''1. Laminar flow''' , v. Nostrand  (1956)</TD></TR></table>

Latest revision as of 19:36, 5 June 2020


dissipation function

A function used to take into account the effect of the forces of viscous friction on the motion of a mechanical system. The dissipation function describes the rate of decrease of the mechanical energy of the system; it is also used, more generally, to allow for the transition of energy of ordered motion to energy of disordered motion (ultimately to thermal energy).

The dissipation function for an isotropic medium, referred to unit volume, has the form

$$ \Phi = \frac{M}{2} \sum _ {i = 1 } ^ { 3 } \sum _ {k = 1 } ^ { 3 } \left ( \frac{\partial v _ {i} }{\partial x _ {k} } + \frac{\partial v _ {k} }{\partial x _ {i} } \right ) ^ {2} + \left ( \eta - \frac{2}{3} \mu \right ) \sum _ {m = 1 } ^ { 3 } \left ( \frac{\partial v _ {m} }{\partial x _ {m} } \right ) ^ {2} , $$

where $ \partial v _ {i} / \partial x _ {k} $ are the components of the tensor of the deformation rates and $ \mu $ and $ \eta $ are the viscosity coefficients which describe the viscosity during motion and the viscosity during volume expansion, respectively.

The equation of change of entropy in a viscous medium has the form:

$$ \rho T \frac{dS}{dt} = \Phi , $$

where $ S $ is the specific entropy, $ \rho $ is the density and $ T $ is the temperature of the liquid.

The dissipation function is a characterization of the viscous forces during the motion of a continuous medium. The equation of motion of a viscous medium is

$$ \rho \frac{d v _ {i} }{dt } = \frac{\partial \sigma _ {ik} }{\partial x _ {k} } + \frac{\partial \sigma _ {ik} ^ \prime }{\partial x _ {k} } , $$

where the $ \sigma _ {ik} $ are the components of the friction-less part of the stress tensor, the

$$ \sigma _ {ik} ^ \prime = \mu \left \{ \left ( \frac{\partial v _ {i} }{\partial x _ {k} } + \frac{\partial v _ {k} }{\partial x _ {i} } \right ) - \frac{2}{3} \frac{\partial v _ {m} }{\partial x _ {m} } \delta _ {ik} \right \} + \eta \frac{\partial v _ {m} }{\partial x _ {m} } \delta _ {ik} $$

are the components of the "viscous" part of the stress tensor, and

$$ \Phi = \sigma _ {ik} \frac{\partial v _ {i} }{\partial x _ {k} } . $$

The dissipation function is employed to allow for the effect of the resistance to small vibrations of the system around its equilibrium position; to study the damping of vibrations in an elastic medium; to allow for heat losses during the damping of electric current vibrations in circuit systems; etc.

References

[1] L.D. Landau, E.M. Lifshitz, "Fluid mechanics" , Pergamon (1959) (Translated from Russian)

Comments

For a Newtonian fluid the stress tensor has components $ t _ {kl} = - \rho \delta _ {kl} + \sigma _ {kl} ^ \prime $, where $ - \rho \delta _ {kl} $ is the friction-less part (above called $ \sigma _ {kl} $) and $ \sigma _ {kl} ^ \prime $ is the viscous part.

References

[a1] S.J. Pai, "Viscous flow theory" , 1. Laminar flow , v. Nostrand (1956)
How to Cite This Entry:
Dissipative function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dissipative_function&oldid=15366
This article was adapted from an original article by V.A. Dorodnitsyn (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article