Difference between revisions of "Discontinuous multiplier"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0330101.png | ||
+ | $#A+1 = 2 n = 0 | ||
+ | $#C+1 = 2 : ~/encyclopedia/old_files/data/D033/D.0303010 Discontinuous multiplier | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A quantity depending on one or more parameters and taking two (or more) values. For example, | A quantity depending on one or more parameters and taking two (or more) values. For example, | ||
− | + | $$ | |
+ | { | ||
+ | \frac{1}{2 \pi i } | ||
+ | } | ||
+ | \int\limits _ {2 + i \infty } ^ { {2 } - i \infty } | ||
+ | |||
+ | \frac{y ^ {s + 2k } ds }{s ( s + 1) \dots ( s + 2k) } | ||
+ | = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | \left \{ | ||
+ | \begin{array}{ll} | ||
+ | |||
+ | \frac{( y - 1) ^ {2k} }{( 2k)! } | ||
+ | & \textrm{ if } y \geq 1, k > 0, \\ | ||
+ | 0 & \textrm{ if } 0 \leq y < 1. \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
Discontinuous multipliers are applied to make a formal extension of the domain of summation or integration, or to reduce a given expression to another to which given formulas or transformations can be applied. Other examples are the [[Dirichlet discontinuous multiplier|Dirichlet discontinuous multiplier]], the Dirac [[Delta-function|delta-function]], etc. | Discontinuous multipliers are applied to make a formal extension of the domain of summation or integration, or to reduce a given expression to another to which given formulas or transformations can be applied. Other examples are the [[Dirichlet discontinuous multiplier|Dirichlet discontinuous multiplier]], the Dirac [[Delta-function|delta-function]], etc. |
Latest revision as of 19:35, 5 June 2020
A quantity depending on one or more parameters and taking two (or more) values. For example,
$$ { \frac{1}{2 \pi i } } \int\limits _ {2 + i \infty } ^ { {2 } - i \infty } \frac{y ^ {s + 2k } ds }{s ( s + 1) \dots ( s + 2k) } = $$
$$ = \ \left \{ \begin{array}{ll} \frac{( y - 1) ^ {2k} }{( 2k)! } & \textrm{ if } y \geq 1, k > 0, \\ 0 & \textrm{ if } 0 \leq y < 1. \\ \end{array} \right .$$
Discontinuous multipliers are applied to make a formal extension of the domain of summation or integration, or to reduce a given expression to another to which given formulas or transformations can be applied. Other examples are the Dirichlet discontinuous multiplier, the Dirac delta-function, etc.
Discontinuous multiplier. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Discontinuous_multiplier&oldid=17698