Difference between revisions of "Dirichlet kernel"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | d0328801.png | ||
| + | $#A+1 = 13 n = 0 | ||
| + | $#C+1 = 13 : ~/encyclopedia/old_files/data/D032/D.0302880 Dirichlet kernel | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
The expression | The expression | ||
| − | + | $$ | |
| + | D _ {n} ( x) = | ||
| + | \frac{1}{2} | ||
| + | + \sum _ {k = 1 } ^ { n } | ||
| + | \cos k x = | ||
| + | \frac{\sin ( n + 1 / 2 ) x }{2 \sin x / 2 } | ||
| + | . | ||
| + | $$ | ||
| + | |||
| + | It was shown by P.G.L. Dirichlet [[#References|[1]]] that the partial sum $ S _ {n} $ | ||
| + | of the Fourier series of a function $ f $ | ||
| + | is expressed by the Dirichlet kernel: | ||
| − | + | $$ | |
| + | S _ {n} ( x) = | ||
| + | \frac{a _ {0} }{2} | ||
| + | + \sum _ {k = 1 } ^ { n } | ||
| + | a _ {k} \cos k x + b _ {k} \sin k x = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| − | + | \frac{1} \pi | |
| + | \int\limits _ {- \pi } ^ \pi f ( t) D _ {n} ( t - x ) d t . | ||
| + | $$ | ||
The integral on the right-hand side is said to be Dirichlet's singular integral. | The integral on the right-hand side is said to be Dirichlet's singular integral. | ||
| Line 13: | Line 44: | ||
In analogy with the Dirichlet kernel [[#References|[3]]], the expression | In analogy with the Dirichlet kernel [[#References|[3]]], the expression | ||
| − | + | $$ | |
| + | \widetilde{D} _ {n} ( x) = \sum _ {k = 1 } ^ { n } | ||
| + | \sin k x = | ||
| + | \frac{\cos x / 2 - \cos ( n + 1 | ||
| + | / 2 ) x }{2 \sin x / 2 } | ||
| + | |||
| + | $$ | ||
| − | is called the conjugate Dirichlet kernel. The partial sum of the series conjugate with the Fourier series of a function | + | is called the conjugate Dirichlet kernel. The partial sum of the series conjugate with the Fourier series of a function $ f $ |
| + | is expressed by the conjugate Dirichlet kernel: | ||
| − | + | $$ | |
| + | \widetilde{S} _ {n} ( x) = \sum _ {k = 1 } ^ { n } b _ {k} \cos k x - | ||
| + | a _ {k} \sin k x = - | ||
| + | \frac{1} \pi | ||
| + | \int\limits _ {- \pi } ^ \pi | ||
| + | f ( t) \widetilde{D} _ {n} ( t - x ) d t . | ||
| + | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.G.L. Dirichlet, "Sur la convergence des séries trigonometriques qui servent à réprésenter une fonction arbitraire entre des limites données" ''J. für Math.'' , '''4''' (1829) pp. 157–169</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.G.L. Dirichlet, "Sur la convergence des séries trigonometriques qui servent à réprésenter une fonction arbitraire entre des limites données" , ''Werke'' , '''1''' , Chelsea, reprint (1969) pp. 117–132</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Tauber, "Ueber den Zusammenhang des reellen und imaginären Teiles einer Potentzreihe" ''Monatsh. Math.'' , '''2''' (1891) pp. 79–118</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.G.L. Dirichlet, "Sur la convergence des séries trigonometriques qui servent à réprésenter une fonction arbitraire entre des limites données" ''J. für Math.'' , '''4''' (1829) pp. 157–169</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.G.L. Dirichlet, "Sur la convergence des séries trigonometriques qui servent à réprésenter une fonction arbitraire entre des limites données" , ''Werke'' , '''1''' , Chelsea, reprint (1969) pp. 117–132</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Tauber, "Ueber den Zusammenhang des reellen und imaginären Teiles einer Potentzreihe" ''Monatsh. Math.'' , '''2''' (1891) pp. 79–118</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1–2''' , Cambridge Univ. Press (1988)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | The Dirichlet kernel is also called the Dirichlet summation kernel. There is also a different normalization in use: the kernels | + | The Dirichlet kernel is also called the Dirichlet summation kernel. There is also a different normalization in use: the kernels $ D _ {n} $ |
| + | and $ \widetilde{D} _ {n} $ | ||
| + | are often multiplied by 2. They are then represented also by the series | ||
| − | + | $$ | |
| + | \sum _ { k=- } n ^ { n } e ^ {ikx} \ \ | ||
| + | \textrm{ and } \ \ | ||
| + | \sum _ { k=- } n ^ { n } | ||
| + | \frac{ \mathop{\rm sgn} n }{i} | ||
| + | e ^ {ikx} , | ||
| + | $$ | ||
| − | respectively. The factors preceding the two integrals in the main article above then become | + | respectively. The factors preceding the two integrals in the main article above then become $ \pm 1 / 2 \pi $ |
| + | instead of $ \pm 1 / \pi $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Dym, H.P. McKean, "Fourier series and integrals" , Acad. Press (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Dym, H.P. McKean, "Fourier series and integrals" , Acad. Press (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953)</TD></TR></table> | ||
Revision as of 19:35, 5 June 2020
The expression
$$ D _ {n} ( x) = \frac{1}{2} + \sum _ {k = 1 } ^ { n } \cos k x = \frac{\sin ( n + 1 / 2 ) x }{2 \sin x / 2 } . $$
It was shown by P.G.L. Dirichlet [1] that the partial sum $ S _ {n} $ of the Fourier series of a function $ f $ is expressed by the Dirichlet kernel:
$$ S _ {n} ( x) = \frac{a _ {0} }{2} + \sum _ {k = 1 } ^ { n } a _ {k} \cos k x + b _ {k} \sin k x = $$
$$ = \ \frac{1} \pi \int\limits _ {- \pi } ^ \pi f ( t) D _ {n} ( t - x ) d t . $$
The integral on the right-hand side is said to be Dirichlet's singular integral.
In analogy with the Dirichlet kernel [3], the expression
$$ \widetilde{D} _ {n} ( x) = \sum _ {k = 1 } ^ { n } \sin k x = \frac{\cos x / 2 - \cos ( n + 1 / 2 ) x }{2 \sin x / 2 } $$
is called the conjugate Dirichlet kernel. The partial sum of the series conjugate with the Fourier series of a function $ f $ is expressed by the conjugate Dirichlet kernel:
$$ \widetilde{S} _ {n} ( x) = \sum _ {k = 1 } ^ { n } b _ {k} \cos k x - a _ {k} \sin k x = - \frac{1} \pi \int\limits _ {- \pi } ^ \pi f ( t) \widetilde{D} _ {n} ( t - x ) d t . $$
References
| [1] | P.G.L. Dirichlet, "Sur la convergence des séries trigonometriques qui servent à réprésenter une fonction arbitraire entre des limites données" J. für Math. , 4 (1829) pp. 157–169 |
| [2] | P.G.L. Dirichlet, "Sur la convergence des séries trigonometriques qui servent à réprésenter une fonction arbitraire entre des limites données" , Werke , 1 , Chelsea, reprint (1969) pp. 117–132 |
| [3] | A. Tauber, "Ueber den Zusammenhang des reellen und imaginären Teiles einer Potentzreihe" Monatsh. Math. , 2 (1891) pp. 79–118 |
| [4] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
| [5] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
Comments
The Dirichlet kernel is also called the Dirichlet summation kernel. There is also a different normalization in use: the kernels $ D _ {n} $ and $ \widetilde{D} _ {n} $ are often multiplied by 2. They are then represented also by the series
$$ \sum _ { k=- } n ^ { n } e ^ {ikx} \ \ \textrm{ and } \ \ \sum _ { k=- } n ^ { n } \frac{ \mathop{\rm sgn} n }{i} e ^ {ikx} , $$
respectively. The factors preceding the two integrals in the main article above then become $ \pm 1 / 2 \pi $ instead of $ \pm 1 / \pi $.
References
| [a1] | H. Dym, H.P. McKean, "Fourier series and integrals" , Acad. Press (1972) |
| [a2] | W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953) |
Dirichlet kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_kernel&oldid=19301