Difference between revisions of "Dirichlet distribution"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0328401.png | ||
+ | $#A+1 = 16 n = 0 | ||
+ | $#C+1 = 16 : ~/encyclopedia/old_files/data/D032/D.0302840 Dirichlet distribution | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A probability distribution on the simplex | A probability distribution on the simplex | ||
− | + | $$ | |
+ | S _ {k} = \{ {( x _ {1} \dots x _ {k} ) } : {x _ {1} \geq 0 \dots x _ {k} \geq 0 , x _ {1} + \dots + x _ {k} = 1 } \} | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ k= 2, 3 \dots $ | ||
+ | determined by the probability density | ||
+ | |||
+ | $$ | ||
+ | p ( x _ {1} \dots x _ {k} ) = \left \{ | ||
+ | |||
+ | \begin{array}{ll} | ||
+ | C _ {k} \prod _ { i= } 1 ^ { k } x _ {i} ^ {\nu _ {i} - 1 } & \textrm{ if } ( x _ {1} \dots x _ {k} ) \in S _ {k} , \\ | ||
+ | 0 & \textrm{ if } ( x _ {1} \dots x _ {k} ) \notin S _ {k} , \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
− | + | where $ \nu _ {1} > 0 \dots \nu _ {k} > 0 $ | |
+ | and | ||
− | + | $$ | |
+ | C _ {k} = \Gamma ( \nu _ {1} + \dots + \nu _ {k} ) \prod _ { i= } 1 ^ { k } | ||
− | + | \frac{1}{\Gamma ( \nu _ {i} ) } | |
+ | , | ||
+ | $$ | ||
− | where | + | where $ \Gamma ( \cdot ) $ |
+ | is the gamma-function. If $ k= 2 $, | ||
+ | one has a special case of the Dirichlet distribution: the [[Beta-distribution|beta-distribution]]. The Dirichlet distribution plays an important role in the theory of order statistics. For instance, if $ X _ {1} \dots X _ {n} $ | ||
+ | are independent random variables that are uniformly distributed over the interval $ [ 0, 1] $ | ||
+ | and $ X ^ {(} 1) \leq \dots \leq X ^ {(} n) $ | ||
+ | are the corresponding order statistics (cf. [[Order statistic|Order statistic]]), the joint distribution of the $ k $ | ||
+ | differences | ||
− | + | $$ | |
+ | X ^ {( m _ {1} ) } , X ^ {( m _ {2} ) } - X ^ {( m _ {1} ) } | ||
+ | \dots X ^ {( m _ {k-} 1 ) } - X ^ {( m _ {k-} 2 ) } , 1 - X ^ | ||
+ | {( m _ {k} ) } | ||
+ | $$ | ||
− | (it is assumed that < | + | (it is assumed that $ 1 \leq m _ {1} < m _ {2} < \dots < m _ {k-} 1 $) |
+ | has the Dirichlet distribution with $ \nu _ {1} = m _ {1} $, | ||
+ | $ \nu _ {2} = m _ {2} - m _ {1} \dots \nu _ {k-} 1 = m _ {k-} 1 - m _ {k-} 2 $, | ||
+ | $ \nu _ {k} = n - m _ {k-} 1 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Wilks, "Mathematical statistics" , Wiley (1962)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Wilks, "Mathematical statistics" , Wiley (1962)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.S. Ferguson, "A Bayesian analysis of some nonparametric problems" ''Ann. Stat.'' , '''1''' (1973) pp. 209–230</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.S. Ferguson, "A Bayesian analysis of some nonparametric problems" ''Ann. Stat.'' , '''1''' (1973) pp. 209–230</TD></TR></table> |
Revision as of 19:35, 5 June 2020
A probability distribution on the simplex
$$ S _ {k} = \{ {( x _ {1} \dots x _ {k} ) } : {x _ {1} \geq 0 \dots x _ {k} \geq 0 , x _ {1} + \dots + x _ {k} = 1 } \} , $$
where $ k= 2, 3 \dots $ determined by the probability density
$$ p ( x _ {1} \dots x _ {k} ) = \left \{ \begin{array}{ll} C _ {k} \prod _ { i= } 1 ^ { k } x _ {i} ^ {\nu _ {i} - 1 } & \textrm{ if } ( x _ {1} \dots x _ {k} ) \in S _ {k} , \\ 0 & \textrm{ if } ( x _ {1} \dots x _ {k} ) \notin S _ {k} , \\ \end{array} \right .$$
where $ \nu _ {1} > 0 \dots \nu _ {k} > 0 $ and
$$ C _ {k} = \Gamma ( \nu _ {1} + \dots + \nu _ {k} ) \prod _ { i= } 1 ^ { k } \frac{1}{\Gamma ( \nu _ {i} ) } , $$
where $ \Gamma ( \cdot ) $ is the gamma-function. If $ k= 2 $, one has a special case of the Dirichlet distribution: the beta-distribution. The Dirichlet distribution plays an important role in the theory of order statistics. For instance, if $ X _ {1} \dots X _ {n} $ are independent random variables that are uniformly distributed over the interval $ [ 0, 1] $ and $ X ^ {(} 1) \leq \dots \leq X ^ {(} n) $ are the corresponding order statistics (cf. Order statistic), the joint distribution of the $ k $ differences
$$ X ^ {( m _ {1} ) } , X ^ {( m _ {2} ) } - X ^ {( m _ {1} ) } \dots X ^ {( m _ {k-} 1 ) } - X ^ {( m _ {k-} 2 ) } , 1 - X ^ {( m _ {k} ) } $$
(it is assumed that $ 1 \leq m _ {1} < m _ {2} < \dots < m _ {k-} 1 $) has the Dirichlet distribution with $ \nu _ {1} = m _ {1} $, $ \nu _ {2} = m _ {2} - m _ {1} \dots \nu _ {k-} 1 = m _ {k-} 1 - m _ {k-} 2 $, $ \nu _ {k} = n - m _ {k-} 1 $.
References
[1] | S.S. Wilks, "Mathematical statistics" , Wiley (1962) |
Comments
References
[a1] | T.S. Ferguson, "A Bayesian analysis of some nonparametric problems" Ann. Stat. , 1 (1973) pp. 209–230 |
Dirichlet distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_distribution&oldid=14736