Difference between revisions of "Differential operator on a module"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0322601.png | ||
+ | $#A+1 = 62 n = 0 | ||
+ | $#C+1 = 62 : ~/encyclopedia/old_files/data/D032/D.0302260 Differential operator on a module | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | is a differential operator of | + | A mapping of modules over a commutative ring which is an analogue of the concept of a differential operator. Let $ R $ |
+ | be a commutative ring, let $ S $ | ||
+ | be a subring of $ R $ | ||
+ | and let $ N $ | ||
+ | and $ M $ | ||
+ | be two $ R $- | ||
+ | modules. A homomorphism of $ S $- | ||
+ | modules $ D : N \rightarrow M $ | ||
+ | is said to be a differential operator of order $ \leq m $, | ||
+ | where $ m $ | ||
+ | is a non-negative integer, if for any $ x \in R $ | ||
+ | the mapping $ D _ {x} : N \rightarrow M $ | ||
+ | defined by the formula | ||
− | + | $$ | |
+ | D _ {x} ( n) = D ( xn) - x D ( n) , | ||
+ | $$ | ||
+ | |||
+ | is a differential operator of order $ \leq m - 1 $. | ||
+ | A differential operator of order zero is a homomorphism of $ R $- | ||
+ | modules $ N \rightarrow M $. | ||
+ | The set of all differential operators of order $ \leq m $ | ||
+ | forms a submodule $ \mathop{\rm Diff} _ {S} ^ {m} ( N , M ) $ | ||
+ | of the $ R $- | ||
+ | module of all homomorphisms of $ S $- | ||
+ | modules $ \mathop{\rm Hom} _ {S} ( N , M ) $. | ||
+ | In particular, | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm Diff} _ {S} ^ {0} ( N , M ) \simeq \mathop{\rm Hom} _ {R} ( N , M ) , | ||
+ | $$ | ||
and the quotient module | and the quotient module | ||
− | + | $$ | |
+ | \mathop{\rm Diff} _ {S} ^ {1} ( R , M ) / \mathop{\rm Diff} _ {S} ^ {0} ( R , M ) | ||
+ | $$ | ||
− | is isomorphic to the module of | + | is isomorphic to the module of $ S $- |
+ | derivations $ \mathop{\rm Der} _ {S} ( R , M ) $ | ||
+ | of $ R $ | ||
+ | with values in $ M $. | ||
+ | The union $ \mathop{\rm Diff} _ {S} ( M) $ | ||
+ | of the increasing family of submodules | ||
− | + | $$ | |
+ | \mathop{\rm Diff} _ {S} ^ {0} ( M , M ) \subset \mathop{\rm Diff} _ {S} ^ {1} ( M ,\ | ||
+ | M ) \subset \dots | ||
+ | $$ | ||
− | is a filtered associative ring with respect to the operation of composition of mappings. This ring is known as the ring of differential operators of the | + | is a filtered associative ring with respect to the operation of composition of mappings. This ring is known as the ring of differential operators of the $ R $- |
+ | module $ M $ | ||
+ | over the subring $ S $, | ||
+ | while the corresponding graded ring | ||
− | + | $$ | |
+ | \mathop{\rm Symb} _ {S} ( M) = \oplus _ {i \geq 0 } \mathop{\rm Symb} _ {S} ^ {i} | ||
+ | ( M) , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \mathop{\rm Symb} _ {S} ^ {i} ( M) = \mathop{\rm Diff} _ {S} ^ {i} ( M , M ) / | ||
+ | \mathop{\rm Diff} _ {S} ^ {i-} 1 ( M , M ) , | ||
+ | $$ | ||
− | is said to be the module of symbols. The image of a differential operator | + | is said to be the module of symbols. The image of a differential operator $ D \in \mathop{\rm Diff} _ {S} ^ {i} ( M , M ) $ |
+ | in the ring $ \mathop{\rm Symb} _ {S} ^ {i} ( M) $ | ||
+ | is said to be the symbol of the differential operator. | ||
− | If | + | If $ R $ |
+ | is an algebra over the field of rational numbers and the module of differentials $ \Omega _ {R/S} ^ {1} $ | ||
+ | is projective, then there exists an isomorphism between the $ S $- | ||
+ | algebra $ \mathop{\rm Diff} _ {S} ( R) $ | ||
+ | and the enveloping algebra of the Lie algebra of $ S $- | ||
+ | derivations $ \mathop{\rm Der} _ {S} ( R , R) $. | ||
+ | In this case the ring $ \mathop{\rm Symb} _ {S} ( R) $ | ||
+ | is isomorphic to the symmetric algebra of the $ R $- | ||
+ | module $ \mathop{\rm Der} _ {S} ( R , R ) $. | ||
− | For example, let | + | For example, let $ R = k [ T] $ |
+ | be the ring of polynomials over a field $ k $; | ||
+ | the mappings $ \partial / \partial T ^ {i} : R \rightarrow R $, | ||
+ | defined by the formula | ||
− | + | $$ | |
− | + | \frac \partial {\partial T ^ {i} } | |
+ | ( T ^ {r} ) = \left ( \begin{array}{c} | ||
+ | r \\ | ||
+ | i | ||
+ | \end{array} | ||
− | + | \right ) T ^ {r-} i , | |
+ | $$ | ||
+ | |||
+ | are differential operators of $ R $ | ||
+ | over $ k $ | ||
+ | of order $ i $. | ||
+ | The ring of differential operators $ \mathop{\rm Diff} _ {k} ( R) $ | ||
+ | is a free module over $ R $ | ||
+ | with basis $ \partial / \partial T ^ {0} \dots \partial / \partial T ^ {i} ,\dots $. | ||
+ | Multiplication is given by the formula | ||
+ | |||
+ | $$ | ||
+ | |||
+ | \frac \partial {\partial T ^ {i} } | ||
+ | \circ | ||
+ | \frac \partial {\partial T ^ {j} } | ||
+ | = \ | ||
+ | \left ( \begin{array}{c} | ||
+ | i+ j \\ | ||
+ | i | ||
+ | \end{array} | ||
+ | \right ) | ||
+ | \frac \partial {\partial T ^ {i+} j } | ||
+ | . | ||
+ | $$ | ||
In particular, | In particular, | ||
− | + | $$ | |
+ | \left ( | ||
+ | \frac \partial {\partial T ^ {1} } | ||
+ | \right ) ^ {n} = n ! | ||
+ | \frac \partial { | ||
+ | \partial T ^ {n} } | ||
+ | |||
+ | $$ | ||
− | (Taylor's formula) which, if the characteristic of | + | (Taylor's formula) which, if the characteristic of $ k $ |
+ | is equal to zero, yields | ||
− | + | $$ | |
+ | \mathop{\rm Diff} _ {k} ( R) \cong R \left [ | ||
+ | \frac \partial {\partial T ^ {1} } | ||
+ | \right | ||
+ | ] . | ||
+ | $$ | ||
− | If | + | If $ \mathop{\rm Spec} ( R) $ |
+ | is an affine group $ S $- | ||
+ | scheme, invariant differential operators of $ R $ | ||
+ | may also be considered [[#References|[2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Vinogradov, I.S. Krasil'shchikov, "What is the Hamilton formalism?" ''Russian Math. Surveys'' , '''30''' : 1 (1975) pp. 177–202 ''Uspekhi Mat. Nauk.'' , '''30''' : 1 (1975) pp. 173–198</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géométrie algébrique. IV Etude locale des schémas et des morphisms des schémas I" ''Publ. Math. IHES'' , '''20''' (1960)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Demazure, P. Gabriel, "Groupes algébriques" , '''1''' , Masson (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.E. Björk, "The global homological dimension of some algebras of differential operators" ''Invent. Math.'' , '''17''' : 1 (1972) pp. 67–78</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Vinogradov, I.S. Krasil'shchikov, "What is the Hamilton formalism?" ''Russian Math. Surveys'' , '''30''' : 1 (1975) pp. 177–202 ''Uspekhi Mat. Nauk.'' , '''30''' : 1 (1975) pp. 173–198</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géométrie algébrique. IV Etude locale des schémas et des morphisms des schémas I" ''Publ. Math. IHES'' , '''20''' (1960)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Demazure, P. Gabriel, "Groupes algébriques" , '''1''' , Masson (1970)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.E. Björk, "The global homological dimension of some algebras of differential operators" ''Invent. Math.'' , '''17''' : 1 (1972) pp. 67–78</TD></TR></table> |
Latest revision as of 19:35, 5 June 2020
A mapping of modules over a commutative ring which is an analogue of the concept of a differential operator. Let $ R $
be a commutative ring, let $ S $
be a subring of $ R $
and let $ N $
and $ M $
be two $ R $-
modules. A homomorphism of $ S $-
modules $ D : N \rightarrow M $
is said to be a differential operator of order $ \leq m $,
where $ m $
is a non-negative integer, if for any $ x \in R $
the mapping $ D _ {x} : N \rightarrow M $
defined by the formula
$$ D _ {x} ( n) = D ( xn) - x D ( n) , $$
is a differential operator of order $ \leq m - 1 $. A differential operator of order zero is a homomorphism of $ R $- modules $ N \rightarrow M $. The set of all differential operators of order $ \leq m $ forms a submodule $ \mathop{\rm Diff} _ {S} ^ {m} ( N , M ) $ of the $ R $- module of all homomorphisms of $ S $- modules $ \mathop{\rm Hom} _ {S} ( N , M ) $. In particular,
$$ \mathop{\rm Diff} _ {S} ^ {0} ( N , M ) \simeq \mathop{\rm Hom} _ {R} ( N , M ) , $$
and the quotient module
$$ \mathop{\rm Diff} _ {S} ^ {1} ( R , M ) / \mathop{\rm Diff} _ {S} ^ {0} ( R , M ) $$
is isomorphic to the module of $ S $- derivations $ \mathop{\rm Der} _ {S} ( R , M ) $ of $ R $ with values in $ M $. The union $ \mathop{\rm Diff} _ {S} ( M) $ of the increasing family of submodules
$$ \mathop{\rm Diff} _ {S} ^ {0} ( M , M ) \subset \mathop{\rm Diff} _ {S} ^ {1} ( M ,\ M ) \subset \dots $$
is a filtered associative ring with respect to the operation of composition of mappings. This ring is known as the ring of differential operators of the $ R $- module $ M $ over the subring $ S $, while the corresponding graded ring
$$ \mathop{\rm Symb} _ {S} ( M) = \oplus _ {i \geq 0 } \mathop{\rm Symb} _ {S} ^ {i} ( M) , $$
where
$$ \mathop{\rm Symb} _ {S} ^ {i} ( M) = \mathop{\rm Diff} _ {S} ^ {i} ( M , M ) / \mathop{\rm Diff} _ {S} ^ {i-} 1 ( M , M ) , $$
is said to be the module of symbols. The image of a differential operator $ D \in \mathop{\rm Diff} _ {S} ^ {i} ( M , M ) $ in the ring $ \mathop{\rm Symb} _ {S} ^ {i} ( M) $ is said to be the symbol of the differential operator.
If $ R $ is an algebra over the field of rational numbers and the module of differentials $ \Omega _ {R/S} ^ {1} $ is projective, then there exists an isomorphism between the $ S $- algebra $ \mathop{\rm Diff} _ {S} ( R) $ and the enveloping algebra of the Lie algebra of $ S $- derivations $ \mathop{\rm Der} _ {S} ( R , R) $. In this case the ring $ \mathop{\rm Symb} _ {S} ( R) $ is isomorphic to the symmetric algebra of the $ R $- module $ \mathop{\rm Der} _ {S} ( R , R ) $.
For example, let $ R = k [ T] $ be the ring of polynomials over a field $ k $; the mappings $ \partial / \partial T ^ {i} : R \rightarrow R $, defined by the formula
$$ \frac \partial {\partial T ^ {i} } ( T ^ {r} ) = \left ( \begin{array}{c} r \\ i \end{array} \right ) T ^ {r-} i , $$
are differential operators of $ R $ over $ k $ of order $ i $. The ring of differential operators $ \mathop{\rm Diff} _ {k} ( R) $ is a free module over $ R $ with basis $ \partial / \partial T ^ {0} \dots \partial / \partial T ^ {i} ,\dots $. Multiplication is given by the formula
$$ \frac \partial {\partial T ^ {i} } \circ \frac \partial {\partial T ^ {j} } = \ \left ( \begin{array}{c} i+ j \\ i \end{array} \right ) \frac \partial {\partial T ^ {i+} j } . $$
In particular,
$$ \left ( \frac \partial {\partial T ^ {1} } \right ) ^ {n} = n ! \frac \partial { \partial T ^ {n} } $$
(Taylor's formula) which, if the characteristic of $ k $ is equal to zero, yields
$$ \mathop{\rm Diff} _ {k} ( R) \cong R \left [ \frac \partial {\partial T ^ {1} } \right ] . $$
If $ \mathop{\rm Spec} ( R) $ is an affine group $ S $- scheme, invariant differential operators of $ R $ may also be considered [2].
References
[1] | A.M. Vinogradov, I.S. Krasil'shchikov, "What is the Hamilton formalism?" Russian Math. Surveys , 30 : 1 (1975) pp. 177–202 Uspekhi Mat. Nauk. , 30 : 1 (1975) pp. 173–198 |
[2] | A. Grothendieck, "Eléments de géométrie algébrique. IV Etude locale des schémas et des morphisms des schémas I" Publ. Math. IHES , 20 (1960) |
[3] | M. Demazure, P. Gabriel, "Groupes algébriques" , 1 , Masson (1970) |
[4] | J.E. Björk, "The global homological dimension of some algebras of differential operators" Invent. Math. , 17 : 1 (1972) pp. 67–78 |
Differential operator on a module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differential_operator_on_a_module&oldid=13452