|
|
Line 1: |
Line 1: |
− | A difference cochain is an [[Obstruction|obstruction]] to the extension of a homotopy between mappings. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316601.png" /> be some cellular space, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316602.png" /> be a simply-connected topological space and suppose, moreover, that one is given two mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316603.png" /> and a homotopy
| + | <!-- |
| + | d0316601.png |
| + | $#A+1 = 58 n = 0 |
| + | $#C+1 = 58 : ~/encyclopedia/old_files/data/D031/D.0301660 Difference cochain and chain |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316604.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316605.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316606.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316607.png" />-dimensional skeleton of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316608.png" />) between these mappings on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d0316609.png" />-dimensional skeleton. For every oriented <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166010.png" />-dimensional cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166011.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166012.png" />, the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166013.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166014.png" /> gives a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166015.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166016.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166017.png" />-dimensional sphere) and hence an element of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166018.png" />. Thus there arises the cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166019.png" /> (the notation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166020.png" /> would be more precise), which is called the difference cochain; the cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166021.png" /> is an obstruction to the extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166022.png" /> to
| + | A difference cochain is an [[Obstruction|obstruction]] to the extension of a homotopy between mappings. Let $ X $ |
| + | be some cellular space, let $ Y $ |
| + | be a simply-connected topological space and suppose, moreover, that one is given two mappings $ f, g: X \rightarrow Y $ |
| + | and a homotopy |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166023.png" /></td> </tr></table>
| + | $$ |
| + | F \ \mathop{\rm on} ( X \times 0) \cup |
| + | ( X ^ {n - 1 } \times I ) \cup ( X \times 1) |
| + | $$ |
| | | |
− | The following statements hold: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166024.png" /> if and only if the homotopy between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166026.png" /> can be extended to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166027.png" />; 2) the cochain
| + | (where $ I = [ 0, 1] $ |
| + | and $ X ^ {n} $ |
| + | is the $ n $- |
| + | dimensional skeleton of $ X $) |
| + | between these mappings on the $ ( n - 1) $- |
| + | dimensional skeleton. For every oriented $ n $- |
| + | dimensional cell $ e ^ {n} $ |
| + | of $ X $, |
| + | the restriction of $ F $ |
| + | to $ \partial ( \overline{e}\; \times I) $ |
| + | gives a mapping $ S ^ {n} \rightarrow Y $( |
| + | $ S ^ {n} $ |
| + | is the $ n $- |
| + | dimensional sphere) and hence an element of the group $ \pi _ {n} ( Y) $. |
| + | Thus there arises the cochain $ d ^ {n} ( f, g) \in C ^ {n} ( X; \pi _ {n} ( Y)) $( |
| + | the notation $ d _ {F} ^ {n} ( f, g) $ |
| + | would be more precise), which is called the difference cochain; the cochain $ d ^ {n} ( f, g) $ |
| + | is an obstruction to the extension of $ F $ |
| + | to |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166028.png" /></td> </tr></table>
| + | $$ |
| + | ( X \times 0 ) \cup ( X ^ {n} \times I ) \cup ( X \times 1) = \ |
| + | ( X \times I) ^ {n - 1 } \cup ( X \times \{ 0, 1 \} ) . |
| + | $$ |
| | | |
− | is a cocycle; 3) the cohomology class
| + | The following statements hold: 1) $ d ^ {n} ( f, g) = 0 $ |
| + | if and only if the homotopy between $ f $ |
| + | and $ g $ |
| + | can be extended to $ X ^ {n} $; |
| + | 2) the cochain |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166029.png" /></td> </tr></table>
| + | $$ |
| + | d ^ {n} ( f, g) \in \ |
| + | C ^ {n} ( X \times I, X \times \{ 0, 1 \} ; \pi _ {n} ( Y)) |
| + | $$ |
| | | |
− | vanishes if and only if there is a homotopy between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166031.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166032.png" /> that coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166033.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166034.png" />. Without loss of generality one can assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166036.png" /> coincide on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166037.png" /> and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166038.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166039.png" />. Then the following statements hold:
| + | is a cocycle; 3) the cohomology class |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166040.png" />, in particular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166041.png" />;
| + | $$ |
| + | [ d ^ {n} ( f, g)] \in \ |
| + | H ^ {n} ( X \times I, X \times \{ 0, 1 \} ; \pi _ {n} ( Y) ) |
| + | $$ |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166042.png" />; | + | vanishes if and only if there is a homotopy between $ f $ |
| + | and $ g $ |
| + | on $ X ^ {n} $ |
| + | that coincides with $ F $ |
| + | on $ X ^ {n - 2 } $. |
| + | Without loss of generality one can assume that $ f $ |
| + | and $ g $ |
| + | coincide on $ X ^ {n - 1 } $ |
| + | and that $ F ( x, t) = f ( x) = g ( x) $ |
| + | for $ x \in X ^ {n - 2 } $. |
| + | Then the following statements hold: |
| | | |
− | 3) for any mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166043.png" /> and for any cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166044.png" /> there is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166045.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166047.png" />.
| + | 1) $ d ^ {n} ( f, g) = - d ^ {n} ( g, f ) $, |
| + | in particular $ d ^ {n} ( f, f ) = 0 $; |
| | | |
− | Now suppose one is given two mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166049.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166051.png" /> be the obstructions to the extensions of the corresponding mappings. The role of the difference cochain in the theory of obstructions is explained by the following proposition:
| + | 2) $ d ^ {n} ( f, g) + d ^ {n} ( g, h) = d ^ {n} ( f, h) $; |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166052.png" /></td> </tr></table>
| + | 3) for any mapping $ f: X \rightarrow Y $ |
| + | and for any cochain $ d \in C ^ {n} ( X; \pi _ {n} ( Y)) $ |
| + | there is a mapping $ g $ |
| + | for which $ f \mid _ {X ^ {n - 1 } } = g \mid _ {X ^ {n - 1 } } $ |
| + | and $ d ^ {n} ( f, g) = d $. |
| | | |
− | Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166053.png" /> can be extended to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166054.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166055.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166056.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166057.png" /> can be extended to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031660/d03166058.png" />.
| + | Now suppose one is given two mappings $ f, g: X ^ {n} \rightarrow Y $, |
| + | $ f \mid _ {X ^ {n - 1 } } = g \mid _ {X ^ {n - 1 } } $ |
| + | and let $ c _ {f} ^ {n + 1 } $ |
| + | and $ c _ {g} ^ {n + 1 } $ |
| + | be the obstructions to the extensions of the corresponding mappings. The role of the difference cochain in the theory of obstructions is explained by the following proposition: |
| | | |
| + | $$ |
| + | c _ {f} ^ {n + 1 } - |
| + | c _ {g} ^ {n + 1 } = \ |
| + | \delta d ^ {n} ( f, g). |
| + | $$ |
| | | |
| + | Thus, if $ g $ |
| + | can be extended to $ X ^ {n + 1 } $, |
| + | then $ [ c _ {f} ^ {n + 1 } ] = 0 $ |
| + | and if $ [ c _ {f} ^ {n + 1 } ] = 0 $, |
| + | then $ f \mid _ {X ^ {n - 1 } } $ |
| + | can be extended to $ X ^ {n + 1 } $. |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) pp. 228</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) pp. 228</TD></TR></table> |
A difference cochain is an obstruction to the extension of a homotopy between mappings. Let $ X $
be some cellular space, let $ Y $
be a simply-connected topological space and suppose, moreover, that one is given two mappings $ f, g: X \rightarrow Y $
and a homotopy
$$
F \ \mathop{\rm on} ( X \times 0) \cup
( X ^ {n - 1 } \times I ) \cup ( X \times 1)
$$
(where $ I = [ 0, 1] $
and $ X ^ {n} $
is the $ n $-
dimensional skeleton of $ X $)
between these mappings on the $ ( n - 1) $-
dimensional skeleton. For every oriented $ n $-
dimensional cell $ e ^ {n} $
of $ X $,
the restriction of $ F $
to $ \partial ( \overline{e}\; \times I) $
gives a mapping $ S ^ {n} \rightarrow Y $(
$ S ^ {n} $
is the $ n $-
dimensional sphere) and hence an element of the group $ \pi _ {n} ( Y) $.
Thus there arises the cochain $ d ^ {n} ( f, g) \in C ^ {n} ( X; \pi _ {n} ( Y)) $(
the notation $ d _ {F} ^ {n} ( f, g) $
would be more precise), which is called the difference cochain; the cochain $ d ^ {n} ( f, g) $
is an obstruction to the extension of $ F $
to
$$
( X \times 0 ) \cup ( X ^ {n} \times I ) \cup ( X \times 1) = \
( X \times I) ^ {n - 1 } \cup ( X \times \{ 0, 1 \} ) .
$$
The following statements hold: 1) $ d ^ {n} ( f, g) = 0 $
if and only if the homotopy between $ f $
and $ g $
can be extended to $ X ^ {n} $;
2) the cochain
$$
d ^ {n} ( f, g) \in \
C ^ {n} ( X \times I, X \times \{ 0, 1 \} ; \pi _ {n} ( Y))
$$
is a cocycle; 3) the cohomology class
$$
[ d ^ {n} ( f, g)] \in \
H ^ {n} ( X \times I, X \times \{ 0, 1 \} ; \pi _ {n} ( Y) )
$$
vanishes if and only if there is a homotopy between $ f $
and $ g $
on $ X ^ {n} $
that coincides with $ F $
on $ X ^ {n - 2 } $.
Without loss of generality one can assume that $ f $
and $ g $
coincide on $ X ^ {n - 1 } $
and that $ F ( x, t) = f ( x) = g ( x) $
for $ x \in X ^ {n - 2 } $.
Then the following statements hold:
1) $ d ^ {n} ( f, g) = - d ^ {n} ( g, f ) $,
in particular $ d ^ {n} ( f, f ) = 0 $;
2) $ d ^ {n} ( f, g) + d ^ {n} ( g, h) = d ^ {n} ( f, h) $;
3) for any mapping $ f: X \rightarrow Y $
and for any cochain $ d \in C ^ {n} ( X; \pi _ {n} ( Y)) $
there is a mapping $ g $
for which $ f \mid _ {X ^ {n - 1 } } = g \mid _ {X ^ {n - 1 } } $
and $ d ^ {n} ( f, g) = d $.
Now suppose one is given two mappings $ f, g: X ^ {n} \rightarrow Y $,
$ f \mid _ {X ^ {n - 1 } } = g \mid _ {X ^ {n - 1 } } $
and let $ c _ {f} ^ {n + 1 } $
and $ c _ {g} ^ {n + 1 } $
be the obstructions to the extensions of the corresponding mappings. The role of the difference cochain in the theory of obstructions is explained by the following proposition:
$$
c _ {f} ^ {n + 1 } -
c _ {g} ^ {n + 1 } = \
\delta d ^ {n} ( f, g).
$$
Thus, if $ g $
can be extended to $ X ^ {n + 1 } $,
then $ [ c _ {f} ^ {n + 1 } ] = 0 $
and if $ [ c _ {f} ^ {n + 1 } ] = 0 $,
then $ f \mid _ {X ^ {n - 1 } } $
can be extended to $ X ^ {n + 1 } $.
References
[a1] | G.W. Whitehead, "Elements of homotopy theory" , Springer (1978) pp. 228 |