Namespaces
Variants
Actions

Difference between revisions of "Dickman-function(2)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
d1101801.png
 +
$#A+1 = 16 n = 2
 +
$#C+1 = 16 : ~/encyclopedia/old_files/data/D110/D.1100180 Dickman function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The unique continuous solution of the system
 
The unique continuous solution of the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101801.png" /></td> </tr></table>
+
$$
 +
\rho ( u ) = 1  ( 0 \leq  u \leq  1 ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101802.png" /></td> </tr></table>
+
$$
 +
u \rho  ^  \prime  ( u ) = - \rho ( u - 1 )  ( u > 1 ) .
 +
$$
  
The Dickman function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101803.png" /> occurs in the problem of estimating the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101804.png" /> of positive integers not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101805.png" /> that are free of prime factors greater than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101806.png" />: for any fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101807.png" />, one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101808.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d1101809.png" /> [[#References|[a2]]], [[#References|[a4]]].
+
The Dickman function $  \rho ( u ) $
 +
occurs in the problem of estimating the number $  \Psi ( x,y ) $
 +
of positive integers not exceeding $  x $
 +
that are free of prime factors greater than $  y $:  
 +
for any fixed $  u > 0 $,  
 +
one has $  \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $
 +
as $  u \rightarrow \infty $[[#References|[a2]]], [[#References|[a4]]].
  
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018010.png" /> is positive, non-increasing and tends to zero at a rate faster than exponential as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018011.png" />. A precise asymptotic estimate is given by the de Bruijn–Alladi formula [[#References|[a1]]], [[#References|[a3]]]:
+
The function $  \rho ( u ) $
 +
is positive, non-increasing and tends to zero at a rate faster than exponential as $  u \rightarrow \infty $.  
 +
A precise asymptotic estimate is given by the de Bruijn–Alladi formula [[#References|[a1]]], [[#References|[a3]]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018012.png" /></td> </tr></table>
+
$$
 +
\rho ( u ) = ( 1 + O ( {
 +
\frac{1}{u}
 +
} ) ) \sqrt { {
 +
\frac{\xi  ^  \prime  ( u ) }{2 \pi }
 +
} } \times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018013.png" /></td> </tr></table>
+
$$
 +
\times
 +
{ \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ {  \xi  ( u ) } { {
 +
\frac{e  ^ {s} - 1 }{s}
 +
} }  {ds } \right \}  ( u > 1 ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018014.png" /> is the [[Euler constant|Euler constant]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018015.png" /> is the unique positive solution of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018016.png" />.
+
where $  \gamma $
 +
is the [[Euler constant|Euler constant]] and $  \xi ( u ) $
 +
is the unique positive solution of the equation $  e ^ {\xi ( u ) } = 1 + u \xi ( u ) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Alladi,  "The Turán–Kubilius inequality for integers without large prime factors"  ''J. Reine Angew. Math.'' , '''335'''  (1982)  pp. 180–196</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N.G. de Bruijn,  "On the number of positive integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018017.png" /> and free of prime factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018018.png" />"  ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''54'''  (1951)  pp. 50–60</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N.G. de Bruijn,  "The asymptotic behaviour of a function occurring in the theory of primes"  ''J. Indian Math. Soc. (N.S.)'' , '''15'''  (1951)  pp. 25–32</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Hildebrand,  G. Tenenbaum,  "Integers without large prime factors"  ''J. de Théorie des Nombres de Bordeaux'' , '''5'''  (1993)  pp. 411–484</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Alladi,  "The Turán–Kubilius inequality for integers without large prime factors"  ''J. Reine Angew. Math.'' , '''335'''  (1982)  pp. 180–196</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N.G. de Bruijn,  "On the number of positive integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018017.png" /> and free of prime factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018018.png" />"  ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''54'''  (1951)  pp. 50–60</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N.G. de Bruijn,  "The asymptotic behaviour of a function occurring in the theory of primes"  ''J. Indian Math. Soc. (N.S.)'' , '''15'''  (1951)  pp. 25–32</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Hildebrand,  G. Tenenbaum,  "Integers without large prime factors"  ''J. de Théorie des Nombres de Bordeaux'' , '''5'''  (1993)  pp. 411–484</TD></TR></table>

Revision as of 17:33, 5 June 2020


The unique continuous solution of the system

$$ \rho ( u ) = 1 ( 0 \leq u \leq 1 ) , $$

$$ u \rho ^ \prime ( u ) = - \rho ( u - 1 ) ( u > 1 ) . $$

The Dickman function $ \rho ( u ) $ occurs in the problem of estimating the number $ \Psi ( x,y ) $ of positive integers not exceeding $ x $ that are free of prime factors greater than $ y $: for any fixed $ u > 0 $, one has $ \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $ as $ u \rightarrow \infty $[a2], [a4].

The function $ \rho ( u ) $ is positive, non-increasing and tends to zero at a rate faster than exponential as $ u \rightarrow \infty $. A precise asymptotic estimate is given by the de Bruijn–Alladi formula [a1], [a3]:

$$ \rho ( u ) = ( 1 + O ( { \frac{1}{u} } ) ) \sqrt { { \frac{\xi ^ \prime ( u ) }{2 \pi } } } \times $$

$$ \times { \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { \frac{e ^ {s} - 1 }{s} } } {ds } \right \} ( u > 1 ) , $$

where $ \gamma $ is the Euler constant and $ \xi ( u ) $ is the unique positive solution of the equation $ e ^ {\xi ( u ) } = 1 + u \xi ( u ) $.

References

[a1] K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors" J. Reine Angew. Math. , 335 (1982) pp. 180–196
[a2] N.G. de Bruijn, "On the number of positive integers and free of prime factors " Nederl. Akad. Wetensch. Proc. Ser. A , 54 (1951) pp. 50–60
[a3] N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes" J. Indian Math. Soc. (N.S.) , 15 (1951) pp. 25–32
[a4] A. Hildebrand, G. Tenenbaum, "Integers without large prime factors" J. de Théorie des Nombres de Bordeaux , 5 (1993) pp. 411–484
How to Cite This Entry:
Dickman-function(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dickman-function(2)&oldid=15579
This article was adapted from an original article by A. Hildebrand (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article