Difference between revisions of "Diagram"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | d0315601.png | ||
| + | $#A+1 = 47 n = 0 | ||
| + | $#C+1 = 47 : ~/encyclopedia/old_files/data/D031/D.0301560 Diagram | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''in a category $ C $'' | |
| − | and | + | A mapping $ D $ |
| + | of an oriented graph $ \Gamma $ | ||
| + | with set of vertices $ I $ | ||
| + | and set of edges $ U $ | ||
| + | into the category $ C $ | ||
| + | for which | ||
| − | + | $$ | |
| + | D ( I) \subset \mathop{\rm Ob} ( C) ,\ D ( U) \subset \mathop{\rm Mor} ( C) , | ||
| + | $$ | ||
| − | + | and $ D ( u) \in \mathop{\rm Hom} ( D ( i) , D ( j) ) $ | |
| + | if the edge $ u \in U $ | ||
| + | has source (origin) $ i $ | ||
| + | and target (end) $ j $. | ||
| + | The concept of a diagram in $ C $ | ||
| + | may also be defined as the image of the mapping $ D $, | ||
| + | in order to obtain a better visualization of diagrams. | ||
| − | + | Let $ \phi = ( u _ {1} \dots u _ {n} ) $ | |
| + | be an oriented chain of the graph $ \Gamma $ | ||
| + | with source $ i $ | ||
| + | and target $ j $, | ||
| + | i.e. a non-empty finite sequence of edges in which the source of each edge coincides with the target of the preceding one; also, let $ D ( \phi ) : D ( i) \rightarrow D ( j) $ | ||
| + | denote the composition of morphisms | ||
| + | |||
| + | $$ | ||
| + | D ( u _ {n} ) \circ \dots \circ D ( u _ {1} ) . | ||
| + | $$ | ||
| + | |||
| + | The diagram $ D $ | ||
| + | is said to be commutative if $ D ( \phi ) = D ( \phi ^ \prime ) $ | ||
| + | for any two oriented chains $ \phi $ | ||
| + | and $ \phi ^ \prime $ | ||
| + | with identical source and target. | ||
The most frequently encountered forms of diagrams are sequences, triangular diagrams and square diagrams. To define a sequence, the defining graph is taken to have the form | The most frequently encountered forms of diagrams are sequences, triangular diagrams and square diagrams. To define a sequence, the defining graph is taken to have the form | ||
| − | + | $$ | |
| + | \cdot _ { i _ {1} } \rightarrow ^ { {u _ 1 } } \dots \rightarrow \cdot _ {i _ {n-} 1 } | ||
| + | \rightarrow ^ { {u _ n-} 1 } \cdot _ {i _ {n} } . | ||
| + | $$ | ||
The corresponding diagram is represented as follows: | The corresponding diagram is represented as follows: | ||
| − | + | $$ | |
| + | A _ {1} \rightarrow ^ { {f _ 1} } A _ {2} \rightarrow \dots \rightarrow A _ {n-} 1 \mathop \rightarrow \limits ^ { {f _ {n-} 1 }} A _ {n} , | ||
| + | $$ | ||
| + | |||
| + | where the $ A _ {k} = D ( i _ {k} ) $ | ||
| + | are objects in the category $ C $, | ||
| + | while the $ f _ {k} = D ( u _ {k} ) $ | ||
| + | are morphisms in this category. | ||
| − | + | A triangular diagram in a category $ C $ | |
| + | corresponds to the graph | ||
| − | + | $$ | |
| − | + | \begin{array}{lcr} | |
| + | {} &i _ {1} & \mathop \rightarrow \limits _ { {u _ {3} }} \\ | ||
| + | {} _ {u _ {1} } \nearrow &i _ {2} &\searrow _ {u _ {2} } \\ | ||
| + | i _ {1} &{} \\ | ||
| + | \end{array} | ||
| + | |||
| + | $$ | ||
and is represented as follows: | and is represented as follows: | ||
| − | + | $$ | |
| − | Commutativity of this diagram means that | + | \begin{array}{lcr} |
| + | A _ {1} &\rightarrow ^ { {f _ 1} } &A _ {2} \\ | ||
| + | {} _ {f _ {3} } \searrow &{} &\swarrow _ {f _ {2} } \\ | ||
| + | {} &A _ {3} &{} \\ | ||
| + | \end{array} | ||
| + | |||
| + | $$ | ||
| + | |||
| + | Commutativity of this diagram means that $ f _ {3} = f _ {2} \circ f _ {1} $. | ||
A square diagram corresponds to the graph | A square diagram corresponds to the graph | ||
| − | + | $$ | |
| + | |||
| + | \begin{array}{lcl} | ||
| + | i _ {1} &\cdot \rightarrow ^ { {\phi _ 1} } \cdot &i _ {2} \\ | ||
| + | size - 3 {\phi _ {4} } \downarrow &{} &\downarrow size - 3 {\phi _ {2} } \\ | ||
| + | i _ {4} &\cdot \mathop \rightarrow \limits _ { {\phi _ {3} }} \cdot &i _ {3} \\ | ||
| + | \end{array} | ||
| + | |||
| + | $$ | ||
and is represented as follows: | and is represented as follows: | ||
| − | + | $$ | |
| + | |||
| + | \begin{array}{lcl} | ||
| + | A _ {1} &\rightarrow ^ { {f _ 1} } &A _ {2} \\ | ||
| + | size - 3 {f _ {4} } \downarrow &{} &\downarrow size - 3 {f _ {2} } \\ | ||
| + | A _ {4} & \mathop \rightarrow \limits _ { {f _ {3} }} &A _ {3} \\ | ||
| + | \end{array} | ||
| + | |||
| + | $$ | ||
| − | Commutativity of this diagram means that | + | Commutativity of this diagram means that $ f _ {2} \circ f _ {1} = f _ {3} \circ f _ {4} $. |
| − | The class of diagrams with a given graph | + | The class of diagrams with a given graph $ \Gamma $ |
| + | forms a category. A morphism of a diagram $ D $ | ||
| + | into a diagram $ D _ {1} $ | ||
| + | is taken to be a family of morphisms $ \nu _ {i} : D ( i) \rightarrow D _ {1} ( i) $, | ||
| + | where $ i $ | ||
| + | runs through the set of vertices of $ \Gamma $, | ||
| + | so that for any edge $ u $ | ||
| + | with source $ i $ | ||
| + | and target $ j $ | ||
| + | the condition $ D _ {1} ( u) \circ \nu _ {i} = \nu _ {j} \circ D ( u) $ | ||
| + | is met. In particular, one may speak of isomorphic diagrams. The graph $ \Gamma $ | ||
| + | is sometimes referred to as the scheme of a diagram in $ C $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Sur quelques points d'algèbre homologique" ''Tohoku Math. J.'' , '''9''' (1957) pp. 119–221</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Grothendieck, "Sur quelques points d'algèbre homologique" ''Tohoku Math. J.'' , '''9''' (1957) pp. 119–221</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7</TD></TR></table> | ||
Revision as of 17:33, 5 June 2020
in a category $ C $
A mapping $ D $ of an oriented graph $ \Gamma $ with set of vertices $ I $ and set of edges $ U $ into the category $ C $ for which
$$ D ( I) \subset \mathop{\rm Ob} ( C) ,\ D ( U) \subset \mathop{\rm Mor} ( C) , $$
and $ D ( u) \in \mathop{\rm Hom} ( D ( i) , D ( j) ) $ if the edge $ u \in U $ has source (origin) $ i $ and target (end) $ j $. The concept of a diagram in $ C $ may also be defined as the image of the mapping $ D $, in order to obtain a better visualization of diagrams.
Let $ \phi = ( u _ {1} \dots u _ {n} ) $ be an oriented chain of the graph $ \Gamma $ with source $ i $ and target $ j $, i.e. a non-empty finite sequence of edges in which the source of each edge coincides with the target of the preceding one; also, let $ D ( \phi ) : D ( i) \rightarrow D ( j) $ denote the composition of morphisms
$$ D ( u _ {n} ) \circ \dots \circ D ( u _ {1} ) . $$
The diagram $ D $ is said to be commutative if $ D ( \phi ) = D ( \phi ^ \prime ) $ for any two oriented chains $ \phi $ and $ \phi ^ \prime $ with identical source and target.
The most frequently encountered forms of diagrams are sequences, triangular diagrams and square diagrams. To define a sequence, the defining graph is taken to have the form
$$ \cdot _ { i _ {1} } \rightarrow ^ { {u _ 1 } } \dots \rightarrow \cdot _ {i _ {n-} 1 } \rightarrow ^ { {u _ n-} 1 } \cdot _ {i _ {n} } . $$
The corresponding diagram is represented as follows:
$$ A _ {1} \rightarrow ^ { {f _ 1} } A _ {2} \rightarrow \dots \rightarrow A _ {n-} 1 \mathop \rightarrow \limits ^ { {f _ {n-} 1 }} A _ {n} , $$
where the $ A _ {k} = D ( i _ {k} ) $ are objects in the category $ C $, while the $ f _ {k} = D ( u _ {k} ) $ are morphisms in this category.
A triangular diagram in a category $ C $ corresponds to the graph
$$ \begin{array}{lcr} {} &i _ {1} & \mathop \rightarrow \limits _ { {u _ {3} }} \\ {} _ {u _ {1} } \nearrow &i _ {2} &\searrow _ {u _ {2} } \\ i _ {1} &{} \\ \end{array} $$
and is represented as follows:
$$ \begin{array}{lcr} A _ {1} &\rightarrow ^ { {f _ 1} } &A _ {2} \\ {} _ {f _ {3} } \searrow &{} &\swarrow _ {f _ {2} } \\ {} &A _ {3} &{} \\ \end{array} $$
Commutativity of this diagram means that $ f _ {3} = f _ {2} \circ f _ {1} $.
A square diagram corresponds to the graph
$$ \begin{array}{lcl} i _ {1} &\cdot \rightarrow ^ { {\phi _ 1} } \cdot &i _ {2} \\ size - 3 {\phi _ {4} } \downarrow &{} &\downarrow size - 3 {\phi _ {2} } \\ i _ {4} &\cdot \mathop \rightarrow \limits _ { {\phi _ {3} }} \cdot &i _ {3} \\ \end{array} $$
and is represented as follows:
$$ \begin{array}{lcl} A _ {1} &\rightarrow ^ { {f _ 1} } &A _ {2} \\ size - 3 {f _ {4} } \downarrow &{} &\downarrow size - 3 {f _ {2} } \\ A _ {4} & \mathop \rightarrow \limits _ { {f _ {3} }} &A _ {3} \\ \end{array} $$
Commutativity of this diagram means that $ f _ {2} \circ f _ {1} = f _ {3} \circ f _ {4} $.
The class of diagrams with a given graph $ \Gamma $ forms a category. A morphism of a diagram $ D $ into a diagram $ D _ {1} $ is taken to be a family of morphisms $ \nu _ {i} : D ( i) \rightarrow D _ {1} ( i) $, where $ i $ runs through the set of vertices of $ \Gamma $, so that for any edge $ u $ with source $ i $ and target $ j $ the condition $ D _ {1} ( u) \circ \nu _ {i} = \nu _ {j} \circ D ( u) $ is met. In particular, one may speak of isomorphic diagrams. The graph $ \Gamma $ is sometimes referred to as the scheme of a diagram in $ C $.
References
| [1] | A. Grothendieck, "Sur quelques points d'algèbre homologique" Tohoku Math. J. , 9 (1957) pp. 119–221 |
Comments
References
| [a1] | H. Cartan, S. Eilenberg, "Homological algebra" , Princeton Univ. Press (1956) |
| [a2] | S. MacLane, "Categories for the working mathematician" , Springer (1971) pp. Chapt. IV, Sect. 6; Chapt. VII, Sect. 7 |
Diagram. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Diagram&oldid=14728