|
|
(3 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312101.png" /> of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312102.png" /> into itself which is an endomorphism of the additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312103.png" /> and satisfies the relation
| + | <!-- |
| + | d0312101.png |
| + | $#A+1 = 98 n = 0 |
| + | $#C+1 = 98 : ~/encyclopedia/old_files/data/D031/D.0301210 Derivation in a ring |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312104.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312105.png" /> be a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312106.png" />-module. A derivation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312107.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312108.png" /> is a homomorphism of the respective additive groups which satisfies the condition
| + | A mapping $ \partial $ |
| + | of a ring $ R $ |
| + | into itself which is an endomorphism of the additive group of $ R $ |
| + | and satisfies the relation usually referred to as the [[Leibniz rule]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d0312109.png" /></td> </tr></table>
| + | $$ |
| + | \partial ( x \cdot y ) = x \partial ( y) + \partial ( x) y . |
| + | $$ |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121010.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121011.png" />. For any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121012.png" /> from the centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121014.png" />, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121016.png" /> is a derivation, is a derivation. The sum of two derivations is also a derivation. This defines the structure of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121017.png" />-module on the set of all derivations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121018.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121019.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121020.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121021.png" /> is a subring in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121022.png" />, a derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121023.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121024.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121025.png" /> is known as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121027.png" />-derivation. The set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121028.png" />-derivations forms a submodule in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121029.png" />, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121030.png" />. The operation
| + | Let $ M $ |
| + | be a left $ R $- |
| + | module. A derivation in $ R $ |
| + | with values in $ M $ |
| + | is a homomorphism of the respective additive groups which satisfies the condition |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121031.png" /></td> </tr></table>
| + | $$ |
| + | \partial ( x \cdot y ) = x \partial ( y) + y \partial ( x) |
| + | $$ |
| | | |
− | defines the structure of a Lie <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121032.png" />-algebra on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121033.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121034.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121035.png" /> is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121036.png" />-modules, then the composition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121037.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121038.png" />. | + | for all $ x , y $ |
| + | from $ R $. |
| + | For any element $ c $ |
| + | from the centre $ C $ |
| + | of $ R $, |
| + | the mapping $ x \rightarrow c \partial ( x) $, |
| + | where $ \partial $ |
| + | is a derivation, is a derivation. The sum of two derivations is also a derivation. This defines the structure of a $ C $- |
| + | module on the set of all derivations in $ R $ |
| + | with values in $ M $, |
| + | denoted by $ \mathop{\rm Der} ( R , M ) $. |
| + | If $ S $ |
| + | is a subring in $ R $, |
| + | a derivation $ \partial $ |
| + | such that $ \partial ( s) = 0 $ |
| + | for all $ s \in S $ |
| + | is known as an $ S $- |
| + | derivation. The set of all $ S $- |
| + | derivations forms a submodule in $ \mathop{\rm Der} ( R , M ) $, |
| + | denoted by $ \mathop{\rm Der} _ {S} ( R , M ) $. |
| + | The operation |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121039.png" /> be a ring of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121040.png" /> with coefficients in a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121041.png" />. The mapping
| + | $$ |
| + | [ \partial , \partial ^ \prime ] = \partial \circ \partial ^ \prime - \partial ^ \prime \circ \partial |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121042.png" /></td> </tr></table>
| + | defines the structure of a Lie $ S $- |
| + | algebra on the $ S $- |
| + | module $ \mathop{\rm Der} _ {S} ( R , M ) $. |
| + | If $ \phi : R \rightarrow M $ |
| + | is a homomorphism of $ R $- |
| + | modules, then the composition $ \phi \circ \partial \in \mathop{\rm Der} ( R , M ) $ |
| + | for any $ \partial \in \mathop{\rm Der} ( R , R ) $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121043.png" /></td> </tr></table>
| + | Let $ R $ |
| + | be a ring of polynomials $ A [ T _ {1} \dots T _ {n} ] $ |
| + | with coefficients in a commutative ring $ A $. |
| + | The mapping |
| | | |
− | is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121044.png" />-derivation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121045.png" />, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121046.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121047.png" /> is a free module with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121048.png" />.
| + | $$ |
| | | |
− | For any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121049.png" /> of an associative ring (or a Lie algebra) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121050.png" /> the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121051.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121052.png" />) is a derivation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121053.png" />, known as an inner derivation. Derivations which are not inner are known as outer.
| + | \frac \partial {\partial T _ {j} } |
| + | : F ( T _ {1} \dots T _ {n} ) = |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121054.png" /> is a subring of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121055.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121056.png" />, one says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121057.png" /> is an extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121058.png" /> if the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121059.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121060.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121061.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121062.png" /> is a commutative integral ring and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121063.png" /> is its field of fractions, and also if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121064.png" /> is a separable algebraic extension of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121065.png" /> or if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121066.png" /> is a Lie algebra over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121068.png" /> is its enveloping algebra, there exists a unique extension of any derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121069.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121070.png" />.
| + | $$ |
| + | = \ |
| + | \sum a _ {i _ {1} \dots i _ {n} } T _ {1} ^ {i _ {1} } \dots |
| + | T _ {n} ^ {i _ {n} } \rightarrow \sum a _ {i _ {1} \dots i _ {n} } i _ {j} T _ {1} ^ {i _ {1} } \dots T _ {j} ^ {i _ {j} - 1 } \dots T _ {n} ^ {i _ {n} } |
| + | $$ |
| | | |
− | There is a close connection between derivations and ring isomorphisms. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121071.png" /> is a nilpotent derivation, that is, for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121073.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121074.png" /> is an algebra over a field of characteristic zero, the mapping
| + | is an $ A $- |
| + | derivation in $ R $, |
| + | and the $ R $- |
| + | module $ \mathop{\rm Der} _ {A} ( R , R ) $ |
| + | is a free module with basis $ \partial / \partial T _ {1} \dots \partial / \partial T _ {n} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121075.png" /></td> </tr></table>
| + | For any element $ a $ |
| + | of an associative ring (or a Lie algebra) $ R $ |
| + | the mapping $ x \rightarrow ax - xa $( |
| + | or $ x \rightarrow ax $) |
| + | is a derivation in $ R $, |
| + | known as an inner derivation. Derivations which are not inner are known as outer. |
| | | |
− | is an automorphism of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121076.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121077.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121078.png" /> is a local commutative ring with maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121079.png" />, there is a bijection between the set of derivations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121080.png" /> and the set of automorphisms of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121081.png" /> which induces the identity automorphism of the residue field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121082.png" />. Derivations of non-separable field extensions play the role of elements of the Galois group of separable extensions in the Galois theory of such extensions [[#References|[4]]]. | + | If $ R $ |
| + | is a subring of a ring $ R ^ { \prime } $ |
| + | and if $ \partial \in \mathop{\rm Der} ( R , R ) $, |
| + | one says that $ \overline \partial \; \in \mathop{\rm Der} ( R ^ { \prime } , R ^ { \prime } ) $ |
| + | is an extension of $ \partial $ |
| + | if the restriction of $ \overline \partial \; $ |
| + | to $ R $ |
| + | coincides with $ \partial $. |
| + | If $ R $ |
| + | is a commutative integral ring and $ R ^ { \prime } $ |
| + | is its field of fractions, and also if $ R ^ { \prime } $ |
| + | is a separable algebraic extension of the field $ R $ |
| + | or if $ R $ |
| + | is a Lie algebra over a field $ k $ |
| + | and $ R ^ { \prime } $ |
| + | is its enveloping algebra, there exists a unique extension of any derivation $ \partial : R \rightarrow R $ |
| + | to $ R ^ { \prime } $. |
| | | |
− | ====References====
| + | There is a close connection between derivations and ring isomorphisms. Thus, if $ \partial $ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algebra" , ''Elements of mathematics'' , '''1''' , Addison-Wesley (1973) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Jacobson, "The theory of rings" , Amer. Math. Soc. (1943)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Mordeson, B. Vinograde, "Strucuture of arbitrary purely inseparable extension fields" , Springer (1970)</TD></TR></table>
| + | is a nilpotent derivation, that is, for some $ n $, |
| + | $ \partial ^ {n} = 0 $, |
| + | and $ R $ |
| + | is an algebra over a field of characteristic zero, the mapping |
| + | |
| + | $$ |
| + | \mathop{\rm exp} ( \partial ) = 1 + \partial + |
| + | \frac{\partial ^ {2} }{2!} |
| + | + \dots + |
| + | \frac{\partial ^ {n-} 1 }{( n - 1 ) ! } |
| + | |
| + | $$ |
| | | |
| + | is an automorphism of the $ k $- |
| + | algebra $ R $. |
| + | If $ R $ |
| + | is a local commutative ring with maximal ideal $ \mathfrak m $, |
| + | there is a bijection between the set of derivations $ \mathop{\rm Der} ( R , R / \mathfrak m ) $ |
| + | and the set of automorphisms of the ring $ R / \mathfrak m ^ {2} $ |
| + | which induces the identity automorphism of the residue field $ R / \mathfrak m $. |
| + | Derivations of non-separable field extensions play the role of elements of the Galois group of separable extensions in the Galois theory of such extensions [[#References|[4]]]. |
| | | |
| + | ====References==== |
| + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algebra" , ''Elements of mathematics'' , '''1''' , Addison-Wesley (1973) (Translated from French)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> N. Jacobson, "The theory of rings" , Amer. Math. Soc. (1943)</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> J. Mordeson, B. Vinograde, "Structure of arbitrary purely inseparable extension fields" , Springer (1970)</TD></TR> |
| + | </table> |
| | | |
| ====Comments==== | | ====Comments==== |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121083.png" />-derivations in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121084.png" /> are precisely the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121085.png" />-linear mappings from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121086.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121087.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121088.png" />-algebra, then a derivation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121089.png" /> is a [[Crossed homomorphism|crossed homomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121090.png" /> or, equivalently, a Hochschild <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121092.png" />-cocycle. | + | The $ S $- |
| + | derivations in $ \mathop{\rm Der} _ {S} ( R , M ) $ |
| + | are precisely the $ S $- |
| + | linear mappings from $ \mathop{\rm Der} ( R , M ) $. |
| + | If $ A $ |
| + | is an $ R $- |
| + | algebra, then a derivation in $ \mathop{\rm Der} ( A , R ) $ |
| + | is a [[Crossed homomorphism|crossed homomorphism]] $ A \rightarrow R $ |
| + | or, equivalently, a Hochschild $ 1 $- |
| + | cocycle. |
| | | |
− | If the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121093.png" /> is semi-simple, all derivations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121094.png" /> are inner, i.e. in that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121095.png" />. | + | If the Lie algebra $ \mathfrak g $ |
| + | is semi-simple, all derivations $ \mathfrak g \rightarrow \mathfrak g $ |
| + | are inner, i.e. in that case $ \mathop{\rm Der} ( \mathfrak g , \mathfrak g ) \simeq \mathfrak g $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121096.png" /> be any algebra (or ring), not necessarily commutative or associative. The algebra is said to be Lie admissible if the associated algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121097.png" /> with multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121098.png" /> is a Lie algebra. Associative algebras and Lie algebras are Lie admissible, but there are also other examples. These algebras were introduced by A.A. Albert in 1948. | + | Let $ R $ |
| + | be any algebra (or ring), not necessarily commutative or associative. The algebra is said to be [[Lie-admissible algebra|Lie admissible]] if the associated algebra $ \overline{R}\; $ |
| + | with multiplication $ [ a , b ] = a b - b a $ |
| + | is a Lie algebra. Associative algebras and Lie algebras are Lie admissible, but there are also other examples. These algebras were introduced by A.A. Albert in 1948. |
| | | |
− | A ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d03121099.png" /> together with a derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031210/d031210100.png" /> is a [[Differential ring|differential ring]], cf. also [[Differential-algebra(2)|Differential algebra]] and [[Differential field|Differential field]]. | + | A ring $ R $ |
| + | together with a derivation $ \partial $ |
| + | is a [[differential ring]], cf. also [[Differential-algebra(2)|Differential algebra]] and [[Differential field]]. |
A mapping $ \partial $
of a ring $ R $
into itself which is an endomorphism of the additive group of $ R $
and satisfies the relation usually referred to as the Leibniz rule
$$
\partial ( x \cdot y ) = x \partial ( y) + \partial ( x) y .
$$
Let $ M $
be a left $ R $-
module. A derivation in $ R $
with values in $ M $
is a homomorphism of the respective additive groups which satisfies the condition
$$
\partial ( x \cdot y ) = x \partial ( y) + y \partial ( x)
$$
for all $ x , y $
from $ R $.
For any element $ c $
from the centre $ C $
of $ R $,
the mapping $ x \rightarrow c \partial ( x) $,
where $ \partial $
is a derivation, is a derivation. The sum of two derivations is also a derivation. This defines the structure of a $ C $-
module on the set of all derivations in $ R $
with values in $ M $,
denoted by $ \mathop{\rm Der} ( R , M ) $.
If $ S $
is a subring in $ R $,
a derivation $ \partial $
such that $ \partial ( s) = 0 $
for all $ s \in S $
is known as an $ S $-
derivation. The set of all $ S $-
derivations forms a submodule in $ \mathop{\rm Der} ( R , M ) $,
denoted by $ \mathop{\rm Der} _ {S} ( R , M ) $.
The operation
$$
[ \partial , \partial ^ \prime ] = \partial \circ \partial ^ \prime - \partial ^ \prime \circ \partial
$$
defines the structure of a Lie $ S $-
algebra on the $ S $-
module $ \mathop{\rm Der} _ {S} ( R , M ) $.
If $ \phi : R \rightarrow M $
is a homomorphism of $ R $-
modules, then the composition $ \phi \circ \partial \in \mathop{\rm Der} ( R , M ) $
for any $ \partial \in \mathop{\rm Der} ( R , R ) $.
Let $ R $
be a ring of polynomials $ A [ T _ {1} \dots T _ {n} ] $
with coefficients in a commutative ring $ A $.
The mapping
$$
\frac \partial {\partial T _ {j} }
: F ( T _ {1} \dots T _ {n} ) =
$$
$$
= \
\sum a _ {i _ {1} \dots i _ {n} } T _ {1} ^ {i _ {1} } \dots
T _ {n} ^ {i _ {n} } \rightarrow \sum a _ {i _ {1} \dots i _ {n} } i _ {j} T _ {1} ^ {i _ {1} } \dots T _ {j} ^ {i _ {j} - 1 } \dots T _ {n} ^ {i _ {n} }
$$
is an $ A $-
derivation in $ R $,
and the $ R $-
module $ \mathop{\rm Der} _ {A} ( R , R ) $
is a free module with basis $ \partial / \partial T _ {1} \dots \partial / \partial T _ {n} $.
For any element $ a $
of an associative ring (or a Lie algebra) $ R $
the mapping $ x \rightarrow ax - xa $(
or $ x \rightarrow ax $)
is a derivation in $ R $,
known as an inner derivation. Derivations which are not inner are known as outer.
If $ R $
is a subring of a ring $ R ^ { \prime } $
and if $ \partial \in \mathop{\rm Der} ( R , R ) $,
one says that $ \overline \partial \; \in \mathop{\rm Der} ( R ^ { \prime } , R ^ { \prime } ) $
is an extension of $ \partial $
if the restriction of $ \overline \partial \; $
to $ R $
coincides with $ \partial $.
If $ R $
is a commutative integral ring and $ R ^ { \prime } $
is its field of fractions, and also if $ R ^ { \prime } $
is a separable algebraic extension of the field $ R $
or if $ R $
is a Lie algebra over a field $ k $
and $ R ^ { \prime } $
is its enveloping algebra, there exists a unique extension of any derivation $ \partial : R \rightarrow R $
to $ R ^ { \prime } $.
There is a close connection between derivations and ring isomorphisms. Thus, if $ \partial $
is a nilpotent derivation, that is, for some $ n $,
$ \partial ^ {n} = 0 $,
and $ R $
is an algebra over a field of characteristic zero, the mapping
$$
\mathop{\rm exp} ( \partial ) = 1 + \partial +
\frac{\partial ^ {2} }{2!}
+ \dots +
\frac{\partial ^ {n-} 1 }{( n - 1 ) ! }
$$
is an automorphism of the $ k $-
algebra $ R $.
If $ R $
is a local commutative ring with maximal ideal $ \mathfrak m $,
there is a bijection between the set of derivations $ \mathop{\rm Der} ( R , R / \mathfrak m ) $
and the set of automorphisms of the ring $ R / \mathfrak m ^ {2} $
which induces the identity automorphism of the residue field $ R / \mathfrak m $.
Derivations of non-separable field extensions play the role of elements of the Galois group of separable extensions in the Galois theory of such extensions [4].
References
[1] | N. Bourbaki, "Algebra" , Elements of mathematics , 1 , Addison-Wesley (1973) (Translated from French) |
[2] | N. Jacobson, "The theory of rings" , Amer. Math. Soc. (1943) |
[3] | S. Lang, "Algebra" , Addison-Wesley (1974) |
[4] | J. Mordeson, B. Vinograde, "Structure of arbitrary purely inseparable extension fields" , Springer (1970) |
The $ S $-
derivations in $ \mathop{\rm Der} _ {S} ( R , M ) $
are precisely the $ S $-
linear mappings from $ \mathop{\rm Der} ( R , M ) $.
If $ A $
is an $ R $-
algebra, then a derivation in $ \mathop{\rm Der} ( A , R ) $
is a crossed homomorphism $ A \rightarrow R $
or, equivalently, a Hochschild $ 1 $-
cocycle.
If the Lie algebra $ \mathfrak g $
is semi-simple, all derivations $ \mathfrak g \rightarrow \mathfrak g $
are inner, i.e. in that case $ \mathop{\rm Der} ( \mathfrak g , \mathfrak g ) \simeq \mathfrak g $.
Let $ R $
be any algebra (or ring), not necessarily commutative or associative. The algebra is said to be Lie admissible if the associated algebra $ \overline{R}\; $
with multiplication $ [ a , b ] = a b - b a $
is a Lie algebra. Associative algebras and Lie algebras are Lie admissible, but there are also other examples. These algebras were introduced by A.A. Albert in 1948.
A ring $ R $
together with a derivation $ \partial $
is a differential ring, cf. also Differential algebra and Differential field.