Difference between revisions of "Denjoy theorem on derivatives"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | d0310401.png | ||
| + | $#A+1 = 12 n = 0 | ||
| + | $#C+1 = 12 : ~/encyclopedia/old_files/data/D031/D.0301040 Denjoy theorem on derivatives | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | The Dini derivatives (cf. [[Dini derivative|Dini derivative]]) of any finite function $ F $ | |
| + | at almost any point $ x $ | ||
| + | satisfy one of the following relations: | ||
| − | + | $$ | |
| + | {\overline{F}\; } {} ^ {+} ( x) = {\overline{F}\; } {} ^ {-} ( x) = + \infty ,\ \ | ||
| + | {\underline{F} } {} ^ {+} ( x) = {\underline{F} } {} ^ {-} ( x) = - \infty ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | {\overline{F}\; } {} ^ {+} x = {\underline{F} } {} ^ {-} ( x) \neq \infty ,\ {F | ||
| + | under } {} ^ {+} ( x) = - \infty ,\ {\overline{F}\; } {} ^ {-} ( x) = + \infty ; | ||
| + | $$ | ||
| − | The theorem has been demonstrated by A. Denjoy for continuous functions [[#References|[1]]]. The theorem, cf. [[#References|[2]]], which follows is a generalization of Denjoy's theorem: For almost-all | + | $$ |
| + | {\underline{F} } {} ^ {+} ( x) = {\overline{F}\; } {} ^ {-} ( x) \neq \infty ,\ {F | ||
| + | bar } {} ^ {+} ( x) = + \infty ,\ {\underline{F} } {} ^ {-} ( x) = - \infty ; | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | {\overline{F}\; } {} ^ {+} ( x) = {\underline{F} } {} ^ {+} ( x) = { | ||
| + | \overline{F}\; } {} ^ {-} ( x) = {\underline{F} } {} ^ {-} ( x) \neq \infty . | ||
| + | $$ | ||
| + | |||
| + | The theorem has been demonstrated by A. Denjoy for continuous functions [[#References|[1]]]. The theorem, cf. [[#References|[2]]], which follows is a generalization of Denjoy's theorem: For almost-all $ x $ | ||
| + | the [[Contingent|contingent]] of the graph of $ F $ | ||
| + | at a point $ ( x, F( x)) $ | ||
| + | is one of the following figures: a plane, a half-plane (with a non-vertical boundary line) or a straight line (non-vertical). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Denjoy, "Mémoire sur les nombres dérivés des fonctions continues" ''J. Math. Pures Appl. (7)'' , '''1''' (1915) pp. 105–240</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Denjoy, "Mémoire sur les nombres dérivés des fonctions continues" ''J. Math. Pures Appl. (7)'' , '''1''' (1915) pp. 105–240</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | The theorem cited is often called the Denjoy–Young–Saks theorem. It was discovered and proved, for continuous | + | The theorem cited is often called the Denjoy–Young–Saks theorem. It was discovered and proved, for continuous $ F $, |
| + | independently of Denjoy by G.C. Young [[#References|[a2]]]. She then extended it to measurable $ F $[[#References|[a3]]]. S. Saks extended the theorem to arbitrary functions $ F $[[#References|[a1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Saks, "Sur les nombres derivées des fonctions" ''Fund. Math.'' , '''5''' (1924) pp. 98–104</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.C. Young, ''Quart. J. Math'' , '''47''' (1916) pp. 148–153</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.C. Young, "On the derivatives of a function" ''Proc. London Math. Soc. (2)'' , '''15''' (1916) pp. 360–384</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Saks, "Sur les nombres derivées des fonctions" ''Fund. Math.'' , '''5''' (1924) pp. 98–104</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.C. Young, ''Quart. J. Math'' , '''47''' (1916) pp. 148–153</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G.C. Young, "On the derivatives of a function" ''Proc. London Math. Soc. (2)'' , '''15''' (1916) pp. 360–384</TD></TR></table> | ||
Latest revision as of 17:32, 5 June 2020
The Dini derivatives (cf. Dini derivative) of any finite function $ F $
at almost any point $ x $
satisfy one of the following relations:
$$ {\overline{F}\; } {} ^ {+} ( x) = {\overline{F}\; } {} ^ {-} ( x) = + \infty ,\ \ {\underline{F} } {} ^ {+} ( x) = {\underline{F} } {} ^ {-} ( x) = - \infty ; $$
$$ {\overline{F}\; } {} ^ {+} x = {\underline{F} } {} ^ {-} ( x) \neq \infty ,\ {F under } {} ^ {+} ( x) = - \infty ,\ {\overline{F}\; } {} ^ {-} ( x) = + \infty ; $$
$$ {\underline{F} } {} ^ {+} ( x) = {\overline{F}\; } {} ^ {-} ( x) \neq \infty ,\ {F bar } {} ^ {+} ( x) = + \infty ,\ {\underline{F} } {} ^ {-} ( x) = - \infty ; $$
$$ {\overline{F}\; } {} ^ {+} ( x) = {\underline{F} } {} ^ {+} ( x) = { \overline{F}\; } {} ^ {-} ( x) = {\underline{F} } {} ^ {-} ( x) \neq \infty . $$
The theorem has been demonstrated by A. Denjoy for continuous functions [1]. The theorem, cf. [2], which follows is a generalization of Denjoy's theorem: For almost-all $ x $ the contingent of the graph of $ F $ at a point $ ( x, F( x)) $ is one of the following figures: a plane, a half-plane (with a non-vertical boundary line) or a straight line (non-vertical).
References
| [1] | A. Denjoy, "Mémoire sur les nombres dérivés des fonctions continues" J. Math. Pures Appl. (7) , 1 (1915) pp. 105–240 |
| [2] | S. Saks, "Theory of the integral" , Hafner (1952) (Translated from French) |
Comments
The theorem cited is often called the Denjoy–Young–Saks theorem. It was discovered and proved, for continuous $ F $, independently of Denjoy by G.C. Young [a2]. She then extended it to measurable $ F $[a3]. S. Saks extended the theorem to arbitrary functions $ F $[a1].
References
| [a1] | S. Saks, "Sur les nombres derivées des fonctions" Fund. Math. , 5 (1924) pp. 98–104 |
| [a2] | G.C. Young, Quart. J. Math , 47 (1916) pp. 148–153 |
| [a3] | G.C. Young, "On the derivatives of a function" Proc. London Math. Soc. (2) , 15 (1916) pp. 360–384 |
Denjoy theorem on derivatives. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Denjoy_theorem_on_derivatives&oldid=17946