Difference between revisions of "Delta amplitude"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0309401.png | ||
+ | $#A+1 = 9 n = 0 | ||
+ | $#C+1 = 9 : ~/encyclopedia/old_files/data/D030/D.0300940 Delta amplitude | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
One of the three fundamental [[Jacobi elliptic functions|Jacobi elliptic functions]]. It is denoted by | One of the three fundamental [[Jacobi elliptic functions|Jacobi elliptic functions]]. It is denoted by | ||
− | + | $$ | |
+ | { \mathop{\rm dn} } u = { \mathop{\rm dn} } ( u , k ) = \Delta { \mathop{\rm am} } u . | ||
+ | $$ | ||
The delta amplitude is expressed as follows in terms of the Weierstrass sigma-function, the Jacobi theta-functions or a series: | The delta amplitude is expressed as follows in terms of the Weierstrass sigma-function, the Jacobi theta-functions or a series: | ||
− | + | $$ | |
+ | { \mathop{\rm dn} } u = { \mathop{\rm dn} } ( u , k ) = \ | ||
+ | |||
+ | \frac{\sigma _ {2} ( u) }{\sigma _ {3} ( u) } | ||
+ | = \ | ||
− | + | \frac{\theta _ {0} ( 0) \theta _ {3} ( v) }{\theta _ {3} ( 0) | |
+ | \theta _ {0} ( v) } | ||
+ | = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | 1 - k ^ {2} | ||
+ | \frac{u ^ {2} }{2!} | ||
+ | + k ^ {2} ( | ||
+ | 4 + k ^ {2} ) | ||
+ | \frac{u ^ {4} }{4!} | ||
+ | - k ^ {2} ( 16 | ||
+ | + 44k ^ {2} + k ^ {4} ) | ||
+ | \frac{u ^ {6} }{6!} | ||
+ | - \dots , | ||
+ | $$ | ||
− | + | where $ k $ | |
+ | is the modulus of the delta amplitude, $ 0 \leq k \leq 1 $, | ||
+ | and $ v = u /2 \omega $, | ||
+ | $ 2 \omega = \pi ( \theta _ {3} ( 0)) ^ {2} $. | ||
+ | If $ k= 0, 1 $ | ||
+ | one has, respectively, | ||
+ | |||
+ | $$ | ||
+ | { \mathop{\rm dn} } u = 1 ,\ \ | ||
+ | { \mathop{\rm dn} } u = | ||
+ | \frac{1}{\cosh u } | ||
+ | . | ||
+ | $$ | ||
See also [[Weierstrass elliptic functions|Weierstrass elliptic functions]]; [[Elliptic function|Elliptic function]]. | See also [[Weierstrass elliptic functions|Weierstrass elliptic functions]]; [[Elliptic function|Elliptic function]]. | ||
Line 17: | Line 61: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer (1964) pp. Chapt. 3, Abschnitt 2</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer (1964) pp. Chapt. 3, Abschnitt 2</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953) pp. Chapt. 13</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953) pp. Chapt. 13</TD></TR></table> |
Latest revision as of 17:32, 5 June 2020
One of the three fundamental Jacobi elliptic functions. It is denoted by
$$ { \mathop{\rm dn} } u = { \mathop{\rm dn} } ( u , k ) = \Delta { \mathop{\rm am} } u . $$
The delta amplitude is expressed as follows in terms of the Weierstrass sigma-function, the Jacobi theta-functions or a series:
$$ { \mathop{\rm dn} } u = { \mathop{\rm dn} } ( u , k ) = \ \frac{\sigma _ {2} ( u) }{\sigma _ {3} ( u) } = \ \frac{\theta _ {0} ( 0) \theta _ {3} ( v) }{\theta _ {3} ( 0) \theta _ {0} ( v) } = $$
$$ = \ 1 - k ^ {2} \frac{u ^ {2} }{2!} + k ^ {2} ( 4 + k ^ {2} ) \frac{u ^ {4} }{4!} - k ^ {2} ( 16 + 44k ^ {2} + k ^ {4} ) \frac{u ^ {6} }{6!} - \dots , $$
where $ k $ is the modulus of the delta amplitude, $ 0 \leq k \leq 1 $, and $ v = u /2 \omega $, $ 2 \omega = \pi ( \theta _ {3} ( 0)) ^ {2} $. If $ k= 0, 1 $ one has, respectively,
$$ { \mathop{\rm dn} } u = 1 ,\ \ { \mathop{\rm dn} } u = \frac{1}{\cosh u } . $$
See also Weierstrass elliptic functions; Elliptic function.
References
[1] | A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , Springer (1964) pp. Chapt. 3, Abschnitt 2 |
Comments
References
[a1] | H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953) pp. Chapt. 13 |
Delta amplitude. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Delta_amplitude&oldid=14869