Namespaces
Variants
Actions

Difference between revisions of "Degenerate parabolic equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
d0308501.png
 +
$#A+1 = 31 n = 0
 +
$#C+1 = 31 : ~/encyclopedia/old_files/data/D030/D.0300850 Degenerate parabolic equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A partial differential equation
 
A partial differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308501.png" /></td> </tr></table>
+
$$
 +
F ( t, x, Du)  = 0,
 +
$$
 +
 
 +
where the function  $  F( t, x, q) $
 +
has the following property: For some even natural number  $  p $,
 +
all roots  $  \lambda $
 +
of the polynomial
 +
 
 +
$$
 +
\sum _ {\alpha : \
 +
p \alpha _ {0} + \alpha _ {1} + \dots + \alpha _ {n} = m }
 +
 
 +
\frac{\partial  F ( t, x, Du) }{\partial  q _  \alpha  }
  
where the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308502.png" /> has the following property: For some even natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308503.png" />, all roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308504.png" /> of the polynomial
+
\lambda ^ {\alpha _ {0} } ( i \xi ) ^ {\alpha  ^  \prime  }
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308505.png" /></td> </tr></table>
+
have non-positive real parts for all real  $  \xi $
 +
and, for certain  $  \xi \neq 0 $,
 +
$  t $,
 +
$  x $,
 +
and  $  Du $,
 +
$  \mathop{\rm Re}  \lambda = 0 $
 +
for some root  $  \lambda $,
 +
or for certain  $  t $,
 +
$  x $
 +
and  $  Du $
 +
the leading coefficient at  $  \lambda  ^ {m/p} $
 +
vanishes. Here  $  t $
 +
is an independent variable which is often interpreted as time;  $  x $
 +
is an  $  n $-
 +
dimensional vector  $  ( x _ {1} \dots x _ {n} ) $;  
 +
$  u ( t, x) $
 +
is the unknown function; $  \alpha $
 +
is a multi-index  $  ( \alpha _ {0} \dots \alpha _ {n} ) $;  
 +
$  Du $
 +
is the vector with components
  
have non-positive real parts for all real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308506.png" /> and, for certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308507.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308508.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d0308509.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085011.png" /> for some root <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085012.png" />, or for certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085015.png" /> the leading coefficient at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085016.png" /> vanishes. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085017.png" /> is an independent variable which is often interpreted as time; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085018.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085019.png" />-dimensional vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085020.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085021.png" /> is the unknown function; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085022.png" /> is a multi-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085023.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085024.png" /> is the vector with components
+
$$
 +
D  ^  \alpha  u  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085025.png" /></td> </tr></table>
+
\frac{\partial  ^ {| \alpha | } u }{\partial  t ^ {\alpha _ {0} }
 +
\partial  x _ {1} ^ {\alpha _ {1} } \dots
 +
\partial  x _ {n} ^ {\alpha _ {n} } }
 +
,\ \
 +
p \alpha _ {0} +
 +
\sum _ {i= 1 } ^ { n }  \alpha _ {i} \leq  m ,
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085026.png" /> is a vector with components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085028.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085029.png" />-dimensional vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085030.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030850/d03085031.png" />. See also [[Degenerate partial differential equation|Degenerate partial differential equation]], and the references given there.
+
$  q $
 +
is a vector with components $  q _  \alpha  $,  
 +
$  \xi $
 +
is an $  n $-
 +
dimensional vector $  ( \xi _ {1} \dots \xi _ {n} ) $,  
 +
and $  ( i \xi ) ^ {\alpha  ^  \prime  } = ( i \xi _ {1} ) ^ {\alpha _ {1} } \dots ( i \xi _ {n} ) ^ {\alpha _ {n} } $.  
 +
See also [[Degenerate partial differential equation|Degenerate partial differential equation]], and the references given there.

Latest revision as of 17:32, 5 June 2020


A partial differential equation

$$ F ( t, x, Du) = 0, $$

where the function $ F( t, x, q) $ has the following property: For some even natural number $ p $, all roots $ \lambda $ of the polynomial

$$ \sum _ {\alpha : \ p \alpha _ {0} + \alpha _ {1} + \dots + \alpha _ {n} = m } \frac{\partial F ( t, x, Du) }{\partial q _ \alpha } \lambda ^ {\alpha _ {0} } ( i \xi ) ^ {\alpha ^ \prime } $$

have non-positive real parts for all real $ \xi $ and, for certain $ \xi \neq 0 $, $ t $, $ x $, and $ Du $, $ \mathop{\rm Re} \lambda = 0 $ for some root $ \lambda $, or for certain $ t $, $ x $ and $ Du $ the leading coefficient at $ \lambda ^ {m/p} $ vanishes. Here $ t $ is an independent variable which is often interpreted as time; $ x $ is an $ n $- dimensional vector $ ( x _ {1} \dots x _ {n} ) $; $ u ( t, x) $ is the unknown function; $ \alpha $ is a multi-index $ ( \alpha _ {0} \dots \alpha _ {n} ) $; $ Du $ is the vector with components

$$ D ^ \alpha u = \ \frac{\partial ^ {| \alpha | } u }{\partial t ^ {\alpha _ {0} } \partial x _ {1} ^ {\alpha _ {1} } \dots \partial x _ {n} ^ {\alpha _ {n} } } ,\ \ p \alpha _ {0} + \sum _ {i= 1 } ^ { n } \alpha _ {i} \leq m , $$

$ q $ is a vector with components $ q _ \alpha $, $ \xi $ is an $ n $- dimensional vector $ ( \xi _ {1} \dots \xi _ {n} ) $, and $ ( i \xi ) ^ {\alpha ^ \prime } = ( i \xi _ {1} ) ^ {\alpha _ {1} } \dots ( i \xi _ {n} ) ^ {\alpha _ {n} } $. See also Degenerate partial differential equation, and the references given there.

How to Cite This Entry:
Degenerate parabolic equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Degenerate_parabolic_equation&oldid=18826
This article was adapted from an original article by A.M. Il'in (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article