Namespaces
Variants
Actions

Difference between revisions of "Defining equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
d0306401.png
 +
$#A+1 = 34 n = 0
 +
$#C+1 = 34 : ~/encyclopedia/old_files/data/D030/D.0300640 Defining equation,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''determining equation, characteristic equation''
 
''determining equation, characteristic equation''
  
An equation associated with a regular singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306401.png" /> of an ordinary linear differential equation
+
An equation associated with a regular singular point $  z = a $
 +
of an ordinary linear differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306402.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
p _ {0} ( z) w  ^ {(} n) + \dots + p _ {n} ( z) w  = 0.
 +
$$
  
 
Let
 
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306403.png" /></td> </tr></table>
+
$$
 +
p _ {j} ( z)  = ( z- a)  ^ {n-} j q _ {j} ( z),
 +
$$
  
where the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306404.png" /> are holomorphic at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306405.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306406.png" />. The defining equation takes the form:
+
where the functions $  q _ {j} ( z) $
 +
are holomorphic at the point $  z= a $
 +
and  $  q _ {0} ( a) \neq 0 $.  
 +
The defining equation takes the form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306407.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\lambda \dots ( \lambda - n+ 1) q _ {0} ( a) + \dots + \lambda q _ {n-} 1 ( a)
 +
+ q _ {n} ( a) =  0.
 +
$$
  
If the roots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306408.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d0306409.png" />, of equation (2) are such that all differences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064011.png" />, are not integers, then equation (1) has a fundamental system of solutions of the form
+
If the roots $  \lambda _ {j} $,  
 +
$  1 \leq  j \leq  n $,  
 +
of equation (2) are such that all differences $  \lambda _ {j} - \lambda _ {k} $,  
 +
where $  j \neq k $,  
 +
are not integers, then equation (1) has a fundamental system of solutions of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064012.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
w _ {j} ( z)  = ( z- a) ^ {\lambda _ {j} } \phi _ {j} ( z),\  1 \leq  j \leq  n ,
 +
$$
  
where the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064013.png" /> are holomorphic at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064014.png" />. Otherwise the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064015.png" /> can be polynomials in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064016.png" /> with coefficients holomorphic at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064017.png" />.
+
where the functions $  \phi _ {j} ( z) $
 +
are holomorphic at $  z= a $.  
 +
Otherwise the coefficients $  \phi _ {j} ( z) $
 +
can be polynomials in $  \mathop{\rm ln} ( z- a) $
 +
with coefficients holomorphic at $  z= a $.
  
The defining equation for a system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064018.png" /> equations
+
The defining equation for a system of $  n $
 +
equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
( z- a) w  ^  \prime  = A( z) w,
 +
$$
  
corresponding to the regular singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064020.png" />, takes the form
+
corresponding to the regular singular point $  z= a $,  
 +
takes the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064021.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm det}  \| \lambda I - A( a) \|  = 0,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064022.png" /> is a matrix-function of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064023.png" />, holomorphic at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064025.png" />. If all differences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064026.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064027.png" />, are not integers, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064028.png" /> are the eigen values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064029.png" />, then the system (4) has a fundamental system of solutions of the form (3), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064030.png" /> are vector-functions holomorphic at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064031.png" />; otherwise, the vector-functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064032.png" /> can be polynomials in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064033.png" /> with coefficients which are vector-functions holomorphic at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030640/d03064034.png" />.
+
where $  A( z) $
 +
is a matrix-function of order $  n \times n $,  
 +
holomorphic at $  z= a $
 +
and $  A( a) \neq 0 $.  
 +
If all differences $  \lambda _ {j} - \lambda _ {k} $,  
 +
where $  j \neq k $,  
 +
are not integers, where the $  \lambda _ {j} $
 +
are the eigen values of $  A $,  
 +
then the system (4) has a fundamental system of solutions of the form (3), where $  \phi _ {j} ( z) $
 +
are vector-functions holomorphic at $  z= a $;  
 +
otherwise, the vector-functions $  \phi _ {j} ( z) $
 +
can be polynomials in $  \mathop{\rm ln} ( z- a) $
 +
with coefficients which are vector-functions holomorphic at $  z= a $.
  
 
In another sense, the term  "determining equation"  is used in research on transformation groups admitted by ordinary partial differential equations (see [[#References|[3]]]).
 
In another sense, the term  "determining equation"  is used in research on transformation groups admitted by ordinary partial differential equations (see [[#References|[3]]]).
Line 33: Line 84:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Kamke,  "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint  (1971)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.V. [L.V. Ovsyannikov] Ovsiannikov,  "Group analysis of differential equations" , Acad. Press  (1982)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Kamke,  "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint  (1971)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.V. [L.V. Ovsyannikov] Ovsiannikov,  "Group analysis of differential equations" , Acad. Press  (1982)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
A defining equation is more commonly called an indicial equation.
 
A defining equation is more commonly called an indicial equation.

Latest revision as of 17:32, 5 June 2020


determining equation, characteristic equation

An equation associated with a regular singular point $ z = a $ of an ordinary linear differential equation

$$ \tag{1 } p _ {0} ( z) w ^ {(} n) + \dots + p _ {n} ( z) w = 0. $$

Let

$$ p _ {j} ( z) = ( z- a) ^ {n-} j q _ {j} ( z), $$

where the functions $ q _ {j} ( z) $ are holomorphic at the point $ z= a $ and $ q _ {0} ( a) \neq 0 $. The defining equation takes the form:

$$ \tag{2 } \lambda \dots ( \lambda - n+ 1) q _ {0} ( a) + \dots + \lambda q _ {n-} 1 ( a) + q _ {n} ( a) = 0. $$

If the roots $ \lambda _ {j} $, $ 1 \leq j \leq n $, of equation (2) are such that all differences $ \lambda _ {j} - \lambda _ {k} $, where $ j \neq k $, are not integers, then equation (1) has a fundamental system of solutions of the form

$$ \tag{3 } w _ {j} ( z) = ( z- a) ^ {\lambda _ {j} } \phi _ {j} ( z),\ 1 \leq j \leq n , $$

where the functions $ \phi _ {j} ( z) $ are holomorphic at $ z= a $. Otherwise the coefficients $ \phi _ {j} ( z) $ can be polynomials in $ \mathop{\rm ln} ( z- a) $ with coefficients holomorphic at $ z= a $.

The defining equation for a system of $ n $ equations

$$ \tag{4 } ( z- a) w ^ \prime = A( z) w, $$

corresponding to the regular singular point $ z= a $, takes the form

$$ \mathop{\rm det} \| \lambda I - A( a) \| = 0, $$

where $ A( z) $ is a matrix-function of order $ n \times n $, holomorphic at $ z= a $ and $ A( a) \neq 0 $. If all differences $ \lambda _ {j} - \lambda _ {k} $, where $ j \neq k $, are not integers, where the $ \lambda _ {j} $ are the eigen values of $ A $, then the system (4) has a fundamental system of solutions of the form (3), where $ \phi _ {j} ( z) $ are vector-functions holomorphic at $ z= a $; otherwise, the vector-functions $ \phi _ {j} ( z) $ can be polynomials in $ \mathop{\rm ln} ( z- a) $ with coefficients which are vector-functions holomorphic at $ z= a $.

In another sense, the term "determining equation" is used in research on transformation groups admitted by ordinary partial differential equations (see [3]).

References

[1] E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955)
[2] E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 1. Gewöhnliche Differentialgleichungen , Chelsea, reprint (1971)
[3] L.V. [L.V. Ovsyannikov] Ovsiannikov, "Group analysis of differential equations" , Acad. Press (1982) (Translated from Russian)

Comments

A defining equation is more commonly called an indicial equation.

How to Cite This Entry:
Defining equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Defining_equation&oldid=17092
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article