Namespaces
Variants
Actions

Difference between revisions of "Dedekind completion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
d1100501.png
 +
$#A+1 = 43 n = 0
 +
$#C+1 = 43 : ~/encyclopedia/old_files/data/D110/D.1100050 Dedekind completion
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of a Riesz space''
 
''of a Riesz space''
  
 
A [[Riesz space|Riesz space]] is called Dedekind complete if every non-empty subset that is bounded from below (respectively, above) has an infimum (respectively, supremum). A Dedekind-complete Riesz space is automatically Archimedean. Hence, so are its Riesz subspaces.
 
A [[Riesz space|Riesz space]] is called Dedekind complete if every non-empty subset that is bounded from below (respectively, above) has an infimum (respectively, supremum). A Dedekind-complete Riesz space is automatically Archimedean. Hence, so are its Riesz subspaces.
  
Given an Archimedean Riesz space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100501.png" />, a Dedekind completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100502.png" /> is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100503.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100504.png" /> is a Riesz space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100505.png" /> is a mapping such that
+
Given an Archimedean Riesz space $  L $,  
 +
a Dedekind completion of $  L $
 +
is a pair $  ( M,T ) $
 +
where $  M $
 +
is a Riesz space and $  T : L \rightarrow M $
 +
is a mapping such that
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100506.png" /> is Dedekind complete;
+
1) $  M $
 +
is Dedekind complete;
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100507.png" /> is a Riesz isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100508.png" /> onto a Riesz subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d1100509.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005010.png" />;
+
2) $  T $
 +
is a Riesz isomorphism of $  L $
 +
onto a Riesz subspace $  T ( L ) $
 +
of $  M $;
  
3) as a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005012.png" /> is normal, i.e., it preserves arbitrary suprema and infima;
+
3) as a mapping $  L \rightarrow M $,  
 +
$  T $
 +
is normal, i.e., it preserves arbitrary suprema and infima;
  
4) for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005013.png" />,
+
4) for all $  a \in M $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005014.png" /></td> </tr></table>
+
$$
 +
a = \sup  \left \{ {x \in T ( L ) } : {x \leq  a } \right \} = \inf  \left \{ {x \in T ( L ) } : {x \geq  a } \right \} .
 +
$$
  
Every Archimedean Riesz space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005015.png" /> has a Dedekind completion, whose underlying [[Partially ordered set|partially ordered set]] can be obtained from the MacNeille completion (cf. [[Completion, MacNeille (of a partially ordered set)|Completion, MacNeille (of a partially ordered set)]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005016.png" /> by removing its largest and smallest elements. The Dedekind completion is unique in the following sense. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005018.png" /> are Dedekind completions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005019.png" />, then there exists a unique Riesz isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005021.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005022.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005023.png" />. More generally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005024.png" /> is a Dedekind completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005025.png" />, then every normal Riesz homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005026.png" /> into any Dedekind-complete Riesz space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005027.png" /> can uniquely be extended to a normal Riesz homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005028.png" />.
+
Every Archimedean Riesz space $  L $
 +
has a Dedekind completion, whose underlying [[Partially ordered set|partially ordered set]] can be obtained from the MacNeille completion (cf. [[Completion, MacNeille (of a partially ordered set)|Completion, MacNeille (of a partially ordered set)]]) of $  L $
 +
by removing its largest and smallest elements. The Dedekind completion is unique in the following sense. If $  ( M _ {1} ,T _ {1} ) $
 +
and $  ( M _ {2} ,T _ {2} ) $
 +
are Dedekind completions of $  L $,  
 +
then there exists a unique Riesz isomorphism $  S $
 +
of $  M _ {1} $
 +
onto $  M _ {2} $
 +
with $  T _ {2} = S \circ T _ {1} $.  
 +
More generally, if $  ( M,T ) $
 +
is a Dedekind completion of $  L $,  
 +
then every normal Riesz homomorphism of $  L $
 +
into any Dedekind-complete Riesz space $  K $
 +
can uniquely be extended to a normal Riesz homomorphism $  M \rightarrow K $.
  
The Riesz spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005029.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005030.png" />) are Dedekind complete; so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005031.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005032.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005033.png" />-finite. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005034.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005035.png" /> a compact [[Hausdorff space|Hausdorff space]]) is Dedekind complete if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005036.png" /> is extremally disconnected (cf. [[Extremally-disconnected space|Extremally-disconnected space]]). There are few non-trivial instances of Riesz spaces whose Dedekind completions are to some extent  "understood" . The Dedekind completion of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005037.png" /> of all converging sequences is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005038.png" />. That of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005039.png" /> is the quotient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005040.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005041.png" /> is the space of all bounded Borel functions and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005042.png" /> is the ideal of all functions that vanish off meager sets (cf. [[Category of a set|Category of a set]]). (In either case, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110050/d11005043.png" /> is obvious.)
+
The Riesz spaces $  L _ {p} ( \mu ) $(
 +
$  1 \leq  p < \infty $)  
 +
are Dedekind complete; so is $  L _  \infty  ( \mu ) $
 +
if $  \mu $
 +
is $  \sigma $-
 +
finite. The space $  C ( X ) $(
 +
$  X $
 +
a compact [[Hausdorff space|Hausdorff space]]) is Dedekind complete if and only if $  X $
 +
is extremally disconnected (cf. [[Extremally-disconnected space|Extremally-disconnected space]]). There are few non-trivial instances of Riesz spaces whose Dedekind completions are to some extent  "understood" . The Dedekind completion of the space $  c $
 +
of all converging sequences is $  l _  \infty  $.  
 +
That of $  C ( X ) $
 +
is the quotient $  B ( X ) /N $,  
 +
where $  B ( X ) $
 +
is the space of all bounded Borel functions and $  N $
 +
is the ideal of all functions that vanish off meager sets (cf. [[Category of a set|Category of a set]]). (In either case, the mapping $  T : L \rightarrow M $
 +
is obvious.)
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. de Jonge,  A. van Rooij,  "Introduction to Riesz spaces" , ''Tracts'' , '''8''' , Math. Centre, Amsterdam  (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Luxemburg,  A.C. Zaanen,  "Riesz spaces" , '''I''' , North-Holland  (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  B.Z. Vulikh,  "Introduction to the theory of partially ordered spaces" , Wolters–Noordhoff  (1967)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  E. de Jonge,  A. van Rooij,  "Introduction to Riesz spaces" , ''Tracts'' , '''8''' , Math. Centre, Amsterdam  (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W. Luxemburg,  A.C. Zaanen,  "Riesz spaces" , '''I''' , North-Holland  (1974)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  B.Z. Vulikh,  "Introduction to the theory of partially ordered spaces" , Wolters–Noordhoff  (1967)  (In Russian)</TD></TR></table>

Latest revision as of 17:32, 5 June 2020


of a Riesz space

A Riesz space is called Dedekind complete if every non-empty subset that is bounded from below (respectively, above) has an infimum (respectively, supremum). A Dedekind-complete Riesz space is automatically Archimedean. Hence, so are its Riesz subspaces.

Given an Archimedean Riesz space $ L $, a Dedekind completion of $ L $ is a pair $ ( M,T ) $ where $ M $ is a Riesz space and $ T : L \rightarrow M $ is a mapping such that

1) $ M $ is Dedekind complete;

2) $ T $ is a Riesz isomorphism of $ L $ onto a Riesz subspace $ T ( L ) $ of $ M $;

3) as a mapping $ L \rightarrow M $, $ T $ is normal, i.e., it preserves arbitrary suprema and infima;

4) for all $ a \in M $,

$$ a = \sup \left \{ {x \in T ( L ) } : {x \leq a } \right \} = \inf \left \{ {x \in T ( L ) } : {x \geq a } \right \} . $$

Every Archimedean Riesz space $ L $ has a Dedekind completion, whose underlying partially ordered set can be obtained from the MacNeille completion (cf. Completion, MacNeille (of a partially ordered set)) of $ L $ by removing its largest and smallest elements. The Dedekind completion is unique in the following sense. If $ ( M _ {1} ,T _ {1} ) $ and $ ( M _ {2} ,T _ {2} ) $ are Dedekind completions of $ L $, then there exists a unique Riesz isomorphism $ S $ of $ M _ {1} $ onto $ M _ {2} $ with $ T _ {2} = S \circ T _ {1} $. More generally, if $ ( M,T ) $ is a Dedekind completion of $ L $, then every normal Riesz homomorphism of $ L $ into any Dedekind-complete Riesz space $ K $ can uniquely be extended to a normal Riesz homomorphism $ M \rightarrow K $.

The Riesz spaces $ L _ {p} ( \mu ) $( $ 1 \leq p < \infty $) are Dedekind complete; so is $ L _ \infty ( \mu ) $ if $ \mu $ is $ \sigma $- finite. The space $ C ( X ) $( $ X $ a compact Hausdorff space) is Dedekind complete if and only if $ X $ is extremally disconnected (cf. Extremally-disconnected space). There are few non-trivial instances of Riesz spaces whose Dedekind completions are to some extent "understood" . The Dedekind completion of the space $ c $ of all converging sequences is $ l _ \infty $. That of $ C ( X ) $ is the quotient $ B ( X ) /N $, where $ B ( X ) $ is the space of all bounded Borel functions and $ N $ is the ideal of all functions that vanish off meager sets (cf. Category of a set). (In either case, the mapping $ T : L \rightarrow M $ is obvious.)

References

[a1] E. de Jonge, A. van Rooij, "Introduction to Riesz spaces" , Tracts , 8 , Math. Centre, Amsterdam (1977)
[a2] W. Luxemburg, A.C. Zaanen, "Riesz spaces" , I , North-Holland (1974)
[a3] B.Z. Vulikh, "Introduction to the theory of partially ordered spaces" , Wolters–Noordhoff (1967) (In Russian)
How to Cite This Entry:
Dedekind completion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dedekind_completion&oldid=14289
This article was adapted from an original article by A.C.M. van Rooy (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article