Difference between revisions of "De la Vallée-Poussin sum"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0302701.png | ||
+ | $#A+1 = 38 n = 0 | ||
+ | $#C+1 = 38 : ~/encyclopedia/old_files/data/D030/D.0300270 de la Vall\Aeee\AAnPoussin sum | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The expression | The expression | ||
− | + | $$ \tag{* } | |
+ | V _ {n, p } ( f, x) = \ | ||
− | + | \frac{1}{p + 1 } | |
− | + | \sum _ {k = n - p } ^ { n } | |
+ | S _ {k} ( f, x), | ||
+ | $$ | ||
− | + | $$ | |
+ | p = 0 \dots n; \ n = 0, 1 \dots | ||
+ | $$ | ||
− | + | where $ S _ {k} ( f, x) $, | |
+ | $ k = 0, 1 \dots $ | ||
+ | are the partial sums of the [[Fourier series|Fourier series]] of a function $ f $ | ||
+ | with period $ 2 \pi $. | ||
+ | If $ p = 0 $, | ||
+ | the de la Vallée-Poussin sums become identical with the partial Fourier sums, and if $ p = n $, | ||
+ | they become identical with the Fejér sums (cf. [[Fejér sum|Fejér sum]]). Ch.J. de la Vallée-Poussin [[#References|[1]]], [[#References|[2]]] was the first to study the method of approximating periodic functions by polynomials of the form (*); he also established the inequality | ||
− | + | $$ | |
+ | | f ( x) - V _ {n, p } ( f, x) | \leq \ | ||
+ | 2 | ||
+ | \frac{n + 1 }{p + 1 } | ||
− | + | E _ {n - p } ( f ), | |
+ | $$ | ||
− | + | $$ | |
+ | p = 0 \dots n, | ||
+ | $$ | ||
+ | |||
+ | where $ E _ {m} ( f ) $ | ||
+ | is the best uniform approximation of the function $ f \in C _ {2 \pi } $ | ||
+ | using trigonometric polynomials of order not greater than $ m $. | ||
+ | If $ p = [ cn] $, | ||
+ | $ 0 < c < 1 $ | ||
+ | and $ [ a] $ | ||
+ | is the integer part of the number $ a $, | ||
+ | the polynomials $ V _ {n,[ cn] } ( f, x) $ | ||
+ | realize an approximation of order $ O( E _ {[( 1- c) n] } ( f )) $. | ||
+ | The polynomials $ V _ {n,[ cn] } ( f, x) $ | ||
+ | yield the best order approximations of continuous functions of period $ 2 \pi $, | ||
+ | with an estimate $ E _ {[ \theta n] } ( f ) = O( E _ {n} ( f )) $ | ||
+ | for certain values of $ \theta $, | ||
+ | $ 0 \leq \theta < 1 $. | ||
+ | The de la Vallée-Poussin sums have several properties which are of interest in the theory of summation of Fourier series. For instance, if $ p = [ cn] $, | ||
+ | $ 0 < c < 1 $, | ||
+ | then $ | V _ {n,p} ( f, x) | \leq K( c) \max | f( x) | $, | ||
+ | and if $ f $ | ||
+ | is a trigonometric polynomial of order not exceeding $ n - p $, | ||
+ | then $ V _ {n,p} ( f, x) = f( x) $. | ||
+ | A de la Vallée-Poussin sum may be written as follows | ||
+ | |||
+ | $$ | ||
+ | V _ {n, p } ( f, x) = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | |||
+ | \frac{1}{( p + 1) \pi } | ||
+ | \int\limits _ {- \pi } ^ \pi \left [ | ||
+ | f ( x + t) \sin | ||
+ | \frac{2n + 1 - p }{2} | ||
+ | t | ||
+ | \frac{\sin | ||
+ | ( p + 1) t / 2 }{2 \sin ^ {2} {t / 2 } } | ||
+ | \right ] dt, | ||
+ | $$ | ||
where the expressions | where the expressions | ||
− | + | $$ | |
+ | K _ {n, p } ( t) = \ | ||
+ | |||
+ | \frac{\sin (( 2n + 1 - p) t / 2 ) \sin (( p + 1) t / 2 ) }{2 ( p + 1) \sin ^ {2} {t / 2 } } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | p = 0 \dots n; \ n = 0, 1 \dots | ||
+ | $$ | ||
are said to be the de la Vallée-Poussin kernels. | are said to be the de la Vallée-Poussin kernels. | ||
Line 27: | Line 102: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Ch.J. de la Vallée-Poussin, "Sur la meilleure approximation des fonctions d'une variable réelle par des expressions d'ordre donné" ''C.R. Acad. Sci. Paris Sér. I. Math.'' , '''166''' (1918) pp. 799–802</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Ch.J. de la Vallée-Poussin, "Leçons sur l'approximation des fonctions d'une variable réelle" , Gauthier-Villars (1919)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Constructive function theory" , '''1''' , F. Ungar (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P.P. Korovkin, "Linear operators and approximation theory" , Hindushtan Publ. Comp. (1960) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S.M. Nikol'skii, "Sur certaines méthodes d'approximation au moyen de sommes trigonométriques" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''4''' : 6 (1940) pp. 509–520</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.B. Stechkin, "On de la Vallée-Poussin sums" ''Dokl. Akad. Nauk SSSR'' , '''80''' : 4 (1951) pp. 545–520 (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.D. Shcherbina, "On a summation method of series, conjugate to Fourier series" ''Mat. Sb.'' , '''27 (69)''' : 2 (1950) pp. 157–170 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.F. Timan, "Approximation properties of linear methods of summation of Fourier series" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''17''' (1953) pp. 99–134 (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A.V. Efimov, "On approximation of periodic functions by de la Vallée-Poussin sums" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' : 5 (1959) pp. 737–770 (In Russian)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> A.V. Efimov, "On approximation of periodic functions by de la Vallée-Poussin sums" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''24''' : 3 (1960) pp. 431–468 (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> S.A. Telyakovskii, "Approximation of differentiable functions by de la Vallée-Poussin sums" ''Dokl. Akad. Nauk SSSR'' , '''121''' : 3 (1958) pp. 426–429 (In Russian)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> S.A. Telyakovskii, "Approximation to functions differentiable in Weyl's sense by de la Vallée-Poussin sums" ''Soviet Math. Dokl.'' , '''1''' : 2 (1960) pp. 240–243 ''Dokl. Akad. Nauk SSSR'' , '''131''' : 2 (1960) pp. 259–262</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Ch.J. de la Vallée-Poussin, "Sur la meilleure approximation des fonctions d'une variable réelle par des expressions d'ordre donné" ''C.R. Acad. Sci. Paris Sér. I. Math.'' , '''166''' (1918) pp. 799–802</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> Ch.J. de la Vallée-Poussin, "Leçons sur l'approximation des fonctions d'une variable réelle" , Gauthier-Villars (1919)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Constructive function theory" , '''1''' , F. Ungar (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P.P. Korovkin, "Linear operators and approximation theory" , Hindushtan Publ. Comp. (1960) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S.M. Nikol'skii, "Sur certaines méthodes d'approximation au moyen de sommes trigonométriques" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''4''' : 6 (1940) pp. 509–520</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> S.B. Stechkin, "On de la Vallée-Poussin sums" ''Dokl. Akad. Nauk SSSR'' , '''80''' : 4 (1951) pp. 545–520 (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> A.D. Shcherbina, "On a summation method of series, conjugate to Fourier series" ''Mat. Sb.'' , '''27 (69)''' : 2 (1950) pp. 157–170 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.F. Timan, "Approximation properties of linear methods of summation of Fourier series" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''17''' (1953) pp. 99–134 (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A.V. Efimov, "On approximation of periodic functions by de la Vallée-Poussin sums" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''23''' : 5 (1959) pp. 737–770 (In Russian)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> A.V. Efimov, "On approximation of periodic functions by de la Vallée-Poussin sums" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''24''' : 3 (1960) pp. 431–468 (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> S.A. Telyakovskii, "Approximation of differentiable functions by de la Vallée-Poussin sums" ''Dokl. Akad. Nauk SSSR'' , '''121''' : 3 (1958) pp. 426–429 (In Russian)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> S.A. Telyakovskii, "Approximation to functions differentiable in Weyl's sense by de la Vallée-Poussin sums" ''Soviet Math. Dokl.'' , '''1''' : 2 (1960) pp. 240–243 ''Dokl. Akad. Nauk SSSR'' , '''131''' : 2 (1960) pp. 259–262</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
The de la Vallée-Poussin kernels are also given by the following formula, which in a way most clearly reveals their structure: | The de la Vallée-Poussin kernels are also given by the following formula, which in a way most clearly reveals their structure: | ||
− | + | $$ | |
+ | K _ {n,p} ( t) = \ | ||
+ | { | ||
+ | \frac{1}{p + 1 } | ||
+ | } | ||
+ | \sum _ {k = n - p } ^ { n } | ||
+ | D _ {k} ( t) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | { | ||
+ | \frac{1}{2} | ||
+ | } + \sum _ {k = 1 } ^ { {n- } p } \cos kt | ||
+ | + \sum _ {k = 1 } ^ { p } \left ( 1-{ | ||
+ | \frac{k}{p + 1 } | ||
+ | } \right ) \ | ||
+ | \cos ( n- p + k) t. | ||
+ | $$ | ||
− | Here the | + | Here the $ D _ {k} $( |
+ | $ k \geq 0 $) | ||
+ | are the Dirichlet kernels (cf. [[Dirichlet kernel|Dirichlet kernel]]). |
Latest revision as of 17:32, 5 June 2020
The expression
$$ \tag{* } V _ {n, p } ( f, x) = \ \frac{1}{p + 1 } \sum _ {k = n - p } ^ { n } S _ {k} ( f, x), $$
$$ p = 0 \dots n; \ n = 0, 1 \dots $$
where $ S _ {k} ( f, x) $, $ k = 0, 1 \dots $ are the partial sums of the Fourier series of a function $ f $ with period $ 2 \pi $. If $ p = 0 $, the de la Vallée-Poussin sums become identical with the partial Fourier sums, and if $ p = n $, they become identical with the Fejér sums (cf. Fejér sum). Ch.J. de la Vallée-Poussin [1], [2] was the first to study the method of approximating periodic functions by polynomials of the form (*); he also established the inequality
$$ | f ( x) - V _ {n, p } ( f, x) | \leq \ 2 \frac{n + 1 }{p + 1 } E _ {n - p } ( f ), $$
$$ p = 0 \dots n, $$
where $ E _ {m} ( f ) $ is the best uniform approximation of the function $ f \in C _ {2 \pi } $ using trigonometric polynomials of order not greater than $ m $. If $ p = [ cn] $, $ 0 < c < 1 $ and $ [ a] $ is the integer part of the number $ a $, the polynomials $ V _ {n,[ cn] } ( f, x) $ realize an approximation of order $ O( E _ {[( 1- c) n] } ( f )) $. The polynomials $ V _ {n,[ cn] } ( f, x) $ yield the best order approximations of continuous functions of period $ 2 \pi $, with an estimate $ E _ {[ \theta n] } ( f ) = O( E _ {n} ( f )) $ for certain values of $ \theta $, $ 0 \leq \theta < 1 $. The de la Vallée-Poussin sums have several properties which are of interest in the theory of summation of Fourier series. For instance, if $ p = [ cn] $, $ 0 < c < 1 $, then $ | V _ {n,p} ( f, x) | \leq K( c) \max | f( x) | $, and if $ f $ is a trigonometric polynomial of order not exceeding $ n - p $, then $ V _ {n,p} ( f, x) = f( x) $. A de la Vallée-Poussin sum may be written as follows
$$ V _ {n, p } ( f, x) = $$
$$ = \ \frac{1}{( p + 1) \pi } \int\limits _ {- \pi } ^ \pi \left [ f ( x + t) \sin \frac{2n + 1 - p }{2} t \frac{\sin ( p + 1) t / 2 }{2 \sin ^ {2} {t / 2 } } \right ] dt, $$
where the expressions
$$ K _ {n, p } ( t) = \ \frac{\sin (( 2n + 1 - p) t / 2 ) \sin (( p + 1) t / 2 ) }{2 ( p + 1) \sin ^ {2} {t / 2 } } , $$
$$ p = 0 \dots n; \ n = 0, 1 \dots $$
are said to be the de la Vallée-Poussin kernels.
References
[1] | Ch.J. de la Vallée-Poussin, "Sur la meilleure approximation des fonctions d'une variable réelle par des expressions d'ordre donné" C.R. Acad. Sci. Paris Sér. I. Math. , 166 (1918) pp. 799–802 |
[2] | Ch.J. de la Vallée-Poussin, "Leçons sur l'approximation des fonctions d'une variable réelle" , Gauthier-Villars (1919) |
[3] | I.P. Natanson, "Constructive function theory" , 1 , F. Ungar (1964) (Translated from Russian) |
[4] | P.P. Korovkin, "Linear operators and approximation theory" , Hindushtan Publ. Comp. (1960) (Translated from Russian) |
[5] | S.M. Nikol'skii, "Sur certaines méthodes d'approximation au moyen de sommes trigonométriques" Izv. Akad. Nauk SSSR Ser. Mat. , 4 : 6 (1940) pp. 509–520 |
[6] | S.B. Stechkin, "On de la Vallée-Poussin sums" Dokl. Akad. Nauk SSSR , 80 : 4 (1951) pp. 545–520 (In Russian) |
[7] | A.D. Shcherbina, "On a summation method of series, conjugate to Fourier series" Mat. Sb. , 27 (69) : 2 (1950) pp. 157–170 (In Russian) |
[8] | A.F. Timan, "Approximation properties of linear methods of summation of Fourier series" Izv. Akad. Nauk SSSR Ser. Mat. , 17 (1953) pp. 99–134 (In Russian) |
[9] | A.F. Timan, "Theory of approximation of functions of a real variable" , Pergamon (1963) (Translated from Russian) |
[10] | A.V. Efimov, "On approximation of periodic functions by de la Vallée-Poussin sums" Izv. Akad. Nauk SSSR Ser. Mat. , 23 : 5 (1959) pp. 737–770 (In Russian) |
[11] | A.V. Efimov, "On approximation of periodic functions by de la Vallée-Poussin sums" Izv. Akad. Nauk SSSR Ser. Mat. , 24 : 3 (1960) pp. 431–468 (In Russian) |
[12] | S.A. Telyakovskii, "Approximation of differentiable functions by de la Vallée-Poussin sums" Dokl. Akad. Nauk SSSR , 121 : 3 (1958) pp. 426–429 (In Russian) |
[13] | S.A. Telyakovskii, "Approximation to functions differentiable in Weyl's sense by de la Vallée-Poussin sums" Soviet Math. Dokl. , 1 : 2 (1960) pp. 240–243 Dokl. Akad. Nauk SSSR , 131 : 2 (1960) pp. 259–262 |
Comments
The de la Vallée-Poussin kernels are also given by the following formula, which in a way most clearly reveals their structure:
$$ K _ {n,p} ( t) = \ { \frac{1}{p + 1 } } \sum _ {k = n - p } ^ { n } D _ {k} ( t) = $$
$$ = \ { \frac{1}{2} } + \sum _ {k = 1 } ^ { {n- } p } \cos kt + \sum _ {k = 1 } ^ { p } \left ( 1-{ \frac{k}{p + 1 } } \right ) \ \cos ( n- p + k) t. $$
Here the $ D _ {k} $( $ k \geq 0 $) are the Dirichlet kernels (cf. Dirichlet kernel).
De la Vallée-Poussin sum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=De_la_Vall%C3%A9e-Poussin_sum&oldid=12479