Difference between revisions of "Cylindrical measure"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0276401.png | ||
+ | $#A+1 = 38 n = 0 | ||
+ | $#C+1 = 38 : ~/encyclopedia/old_files/data/C027/C.0207640 Cylindrical measure | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A cylindrical measure in measure theory on topological vector spaces is a finitely-additive measure $ \mu $ | |
+ | defined on the algebra $ \mathfrak A ( E) $ | ||
+ | of cylinder sets in a topological vector space $ E $, | ||
+ | that is, sets of the form | ||
− | + | $$ \tag{* } | |
+ | A = F _ {\phi _ {1} \dots \phi _ {n} } ^ { - 1 } ( B), | ||
+ | $$ | ||
− | + | where $ B \in \mathfrak B ( \mathbf R ^ {n} ) $— | |
+ | the Borel $ \sigma $- | ||
+ | algebra of subsets of the space $ \mathbf R ^ {n} $, | ||
+ | $ n = 1, 2 ,\dots $; | ||
+ | $ \phi _ {1} \dots \phi _ {n} $ | ||
+ | are linear functionals on $ E $, | ||
+ | and $ F _ {\phi _ {1} \dots \phi _ {n} } $ | ||
+ | is the mapping | ||
− | + | $$ | |
+ | E \rightarrow \mathbf R ^ {n} : \ | ||
+ | x \rightarrow \{ \phi _ {1} ( x) \dots | ||
+ | \phi _ {n} ( x) \} \in \mathbf R ^ {n} ,\ \ | ||
+ | x \in E. | ||
+ | $$ | ||
− | + | Here it is assumed that the restriction of $ \mu $ | |
+ | to any $ \sigma $- | ||
+ | subalgebra $ \mathfrak B _ {\phi _ {1} \dots \phi _ {n} } ( E) \subset \mathfrak A ( E) $ | ||
+ | of sets of the form (*) with a fixed collection $ ( \phi _ {1} \dots \phi _ {n} ) $ | ||
+ | of functionals is a $ \sigma $- | ||
+ | additive measure on $ \mathfrak B _ {\phi _ {1} \dots \phi _ {n} } $( | ||
+ | other names are pre-measure, quasi-measure). | ||
− | + | In the theory of functions of several real variables a cylindrical measure is a special case of the [[Hausdorff measure|Hausdorff measure]], defined on the Borel $ \sigma $- | |
+ | algebra $ \mathfrak B ( \mathbf R ^ {n + 1 } ) $ | ||
+ | of the space $ \mathbf R ^ {n + 1 } $ | ||
+ | by means of the formula | ||
− | + | $$ | |
+ | \lambda ( B) = \ | ||
+ | \lim\limits _ {\epsilon \rightarrow 0 } \ | ||
+ | \inf _ {\begin{array}{c} | ||
+ | \{ A \} , \\ | ||
+ | \mathop{\rm diam} A < \epsilon | ||
+ | \end{array} | ||
+ | } \ | ||
+ | \left \{ \sum l ( A) \right \} , | ||
+ | $$ | ||
− | + | where the lower bound is taken over all finite or countable coverings of a set $ B \in \mathfrak B ( \mathbf R ^ {n+} 1 ) $ | |
+ | by cylinders $ A $ | ||
+ | with spherical bases and axes parallel to the $ ( n + 1) $- | ||
+ | st coordinate axis in $ \mathbf R ^ {n + 1 } $; | ||
+ | here $ l ( A) $ | ||
+ | is the $ n $- | ||
+ | dimensional volume of an axial section of the cylinder $ A $. | ||
+ | When $ B $ | ||
+ | is the graph of a continuous function $ f $ | ||
+ | of $ n $ | ||
+ | variables defined in a domain $ G \subset \mathbf R ^ {n} $: | ||
+ | |||
+ | $$ | ||
+ | B = \ | ||
+ | \{ {( x _ {1} \dots x _ {n+} 1 ) } : {x _ {n+} 1 = | ||
+ | f ( x _ {1} \dots x _ {n} ) } \} | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | then $ \lambda ( B) $ | ||
+ | is the same as the so-called $ n $- | ||
+ | dimensional variation of $ f $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , '''4''' , Acad. Press (1968) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.G. Vitushkin, "On higher-dimensional variations" , Moscow (1955) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , '''4''' , Acad. Press (1968) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.G. Vitushkin, "On higher-dimensional variations" , Moscow (1955) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Concerning the | + | Concerning the $ n $- |
+ | dimensional variation of a function see [[Variation of a function|Variation of a function]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Schwartz, "Radon measures on arbitrary topological spaces and cylindrical measures" , Oxford Univ. Press (1973)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. Schwartz, "Radon measures on arbitrary topological spaces and cylindrical measures" , Oxford Univ. Press (1973)</TD></TR></table> |
Latest revision as of 17:32, 5 June 2020
A cylindrical measure in measure theory on topological vector spaces is a finitely-additive measure $ \mu $
defined on the algebra $ \mathfrak A ( E) $
of cylinder sets in a topological vector space $ E $,
that is, sets of the form
$$ \tag{* } A = F _ {\phi _ {1} \dots \phi _ {n} } ^ { - 1 } ( B), $$
where $ B \in \mathfrak B ( \mathbf R ^ {n} ) $— the Borel $ \sigma $- algebra of subsets of the space $ \mathbf R ^ {n} $, $ n = 1, 2 ,\dots $; $ \phi _ {1} \dots \phi _ {n} $ are linear functionals on $ E $, and $ F _ {\phi _ {1} \dots \phi _ {n} } $ is the mapping
$$ E \rightarrow \mathbf R ^ {n} : \ x \rightarrow \{ \phi _ {1} ( x) \dots \phi _ {n} ( x) \} \in \mathbf R ^ {n} ,\ \ x \in E. $$
Here it is assumed that the restriction of $ \mu $ to any $ \sigma $- subalgebra $ \mathfrak B _ {\phi _ {1} \dots \phi _ {n} } ( E) \subset \mathfrak A ( E) $ of sets of the form (*) with a fixed collection $ ( \phi _ {1} \dots \phi _ {n} ) $ of functionals is a $ \sigma $- additive measure on $ \mathfrak B _ {\phi _ {1} \dots \phi _ {n} } $( other names are pre-measure, quasi-measure).
In the theory of functions of several real variables a cylindrical measure is a special case of the Hausdorff measure, defined on the Borel $ \sigma $- algebra $ \mathfrak B ( \mathbf R ^ {n + 1 } ) $ of the space $ \mathbf R ^ {n + 1 } $ by means of the formula
$$ \lambda ( B) = \ \lim\limits _ {\epsilon \rightarrow 0 } \ \inf _ {\begin{array}{c} \{ A \} , \\ \mathop{\rm diam} A < \epsilon \end{array} } \ \left \{ \sum l ( A) \right \} , $$
where the lower bound is taken over all finite or countable coverings of a set $ B \in \mathfrak B ( \mathbf R ^ {n+} 1 ) $ by cylinders $ A $ with spherical bases and axes parallel to the $ ( n + 1) $- st coordinate axis in $ \mathbf R ^ {n + 1 } $; here $ l ( A) $ is the $ n $- dimensional volume of an axial section of the cylinder $ A $. When $ B $ is the graph of a continuous function $ f $ of $ n $ variables defined in a domain $ G \subset \mathbf R ^ {n} $:
$$ B = \ \{ {( x _ {1} \dots x _ {n+} 1 ) } : {x _ {n+} 1 = f ( x _ {1} \dots x _ {n} ) } \} , $$
then $ \lambda ( B) $ is the same as the so-called $ n $- dimensional variation of $ f $.
References
[1] | I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , 4 , Acad. Press (1968) (Translated from Russian) |
[2] | A.G. Vitushkin, "On higher-dimensional variations" , Moscow (1955) (In Russian) |
Comments
Concerning the $ n $- dimensional variation of a function see Variation of a function.
References
[a1] | L. Schwartz, "Radon measures on arbitrary topological spaces and cylindrical measures" , Oxford Univ. Press (1973) |
Cylindrical measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cylindrical_measure&oldid=11563