Difference between revisions of "Cosine amplitude"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | c0266401.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/C026/C.0206640 Cosine amplitude, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''elliptic cosine'' | ''elliptic cosine'' | ||
One of the three basic [[Jacobi elliptic functions|Jacobi elliptic functions]], denoted by | One of the three basic [[Jacobi elliptic functions|Jacobi elliptic functions]], denoted by | ||
− | + | $$ | |
+ | \mathop{\rm cn} u = \ | ||
+ | \mathop{\rm cn} ( u , k) = \ | ||
+ | \cosam u . | ||
+ | $$ | ||
The cosine amplitude is expressible in terms of the Weierstrass sigma-functions, the Jacobi theta-functions or a power series, as follows: | The cosine amplitude is expressible in terms of the Weierstrass sigma-functions, the Jacobi theta-functions or a power series, as follows: | ||
− | + | $$ | |
+ | \mathop{\rm cn} u = \ | ||
+ | \mathop{\rm cn} ( u, k) = \ | ||
+ | |||
+ | \frac{\sigma _ {1} ( u) }{\sigma _ {3} ( u) } | ||
+ | = \ | ||
+ | |||
+ | \frac{\theta _ {0} ( 0) \theta _ {2} ( \upsilon ) }{\theta _ {2} ( 0) \theta _ {0} ( \upsilon ) } | ||
+ | = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | 1 - | ||
+ | \frac{u ^ {2} }{2! } | ||
+ | + ( 1 + 4k ^ {2} ) | ||
+ | \frac{u | ||
+ | ^ {4} }{4! } | ||
+ | - ( 1 + 44k ^ {2} + 16k ^ {4} ) | ||
+ | \frac{u ^ {6} }{6! } | ||
+ | + \dots , | ||
+ | $$ | ||
− | where | + | where $ k $ |
+ | is the modulus of the elliptic function, $ 0 \leq k \leq 1 $; | ||
+ | $ \upsilon = u/2 \omega $, | ||
+ | and $ 2 \omega = \pi \theta _ {3} ^ {2} ( 0) $. | ||
+ | For $ k = 0, 1 $ | ||
+ | one has, respectively, $ \mathop{\rm cn} ( u , 0) = \cos u $, | ||
+ | $ \mathop{\rm cn} ( u , 1) = 1/ \cosh u $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer (1964) pp. Chapt. 3</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , '''2''' , Springer (1964) pp. Chapt. 3</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | More on the function | + | More on the function $ \mathop{\rm cn} u $, |
+ | e.g. derivatives, evenness, behaviour on the real line, etc. can be found in [[#References|[a1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''3''' , Chelsea (1977) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''3''' , Chelsea (1977) (Translated from Russian)</TD></TR></table> |
Latest revision as of 17:31, 5 June 2020
elliptic cosine
One of the three basic Jacobi elliptic functions, denoted by
$$ \mathop{\rm cn} u = \ \mathop{\rm cn} ( u , k) = \ \cosam u . $$
The cosine amplitude is expressible in terms of the Weierstrass sigma-functions, the Jacobi theta-functions or a power series, as follows:
$$ \mathop{\rm cn} u = \ \mathop{\rm cn} ( u, k) = \ \frac{\sigma _ {1} ( u) }{\sigma _ {3} ( u) } = \ \frac{\theta _ {0} ( 0) \theta _ {2} ( \upsilon ) }{\theta _ {2} ( 0) \theta _ {0} ( \upsilon ) } = $$
$$ = \ 1 - \frac{u ^ {2} }{2! } + ( 1 + 4k ^ {2} ) \frac{u ^ {4} }{4! } - ( 1 + 44k ^ {2} + 16k ^ {4} ) \frac{u ^ {6} }{6! } + \dots , $$
where $ k $ is the modulus of the elliptic function, $ 0 \leq k \leq 1 $; $ \upsilon = u/2 \omega $, and $ 2 \omega = \pi \theta _ {3} ^ {2} ( 0) $. For $ k = 0, 1 $ one has, respectively, $ \mathop{\rm cn} ( u , 0) = \cos u $, $ \mathop{\rm cn} ( u , 1) = 1/ \cosh u $.
References
[1] | A. Hurwitz, R. Courant, "Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen" , 2 , Springer (1964) pp. Chapt. 3 |
Comments
More on the function $ \mathop{\rm cn} u $, e.g. derivatives, evenness, behaviour on the real line, etc. can be found in [a1].
References
[a1] | A.I. Markushevich, "Theory of functions of a complex variable" , 3 , Chelsea (1977) (Translated from Russian) |
Cosine amplitude. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cosine_amplitude&oldid=16678