|
|
Line 1: |
Line 1: |
− | A characteristic of dependence between random variables. The correlation ratio of a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265801.png" /> relative to a random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265802.png" /> is the expression
| + | <!-- |
| + | c0265801.png |
| + | $#A+1 = 26 n = 0 |
| + | $#C+1 = 26 : ~/encyclopedia/old_files/data/C026/C.0206580 Correlation ratio |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265803.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265804.png" /> is the variance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265806.png" /> is the conditional variance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265807.png" /> given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265808.png" />, which characterizes the spread of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c0265809.png" /> about its conditional mathematical expectation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658010.png" /> for a given value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658011.png" />. Invariably, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658012.png" />. The equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658013.png" /> corresponds to non-correlated random variables; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658014.png" /> if and only if there is an exact functional relationship between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658016.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658017.png" /> is linearly dependent on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658018.png" />, the correlation ratio coincides with the squared correlation coefficient. The correlation ratio is non-symmetric in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658020.png" />, and so, together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658021.png" />, one considers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658022.png" /> (the correlation ratio of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658023.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658024.png" />, defined analogously). There is no simple relationship between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026580/c02658026.png" />. See also [[Correlation (in statistics)|Correlation (in statistics)]]. | + | A characteristic of dependence between random variables. The correlation ratio of a random variable $ Y $ |
| + | relative to a random variable $ X $ |
| + | is the expression |
| + | |
| + | $$ |
| + | \eta _ {Y \mid X } ^ {2} = \ |
| + | 1 - {\mathsf E} \left [ |
| + | |
| + | \frac{ {\mathsf D} ( Y \mid X) }{ {\mathsf D} Y } |
| + | |
| + | \right ] , |
| + | $$ |
| + | |
| + | where $ {\mathsf D} Y $ |
| + | is the variance of $ Y $, |
| + | $ {\mathsf D} ( Y \mid X) $ |
| + | is the conditional variance of $ Y $ |
| + | given $ X $, |
| + | which characterizes the spread of $ Y $ |
| + | about its conditional mathematical expectation $ {\mathsf E} ( Y \mid X) $ |
| + | for a given value of $ X $. |
| + | Invariably, $ 0 \leq \eta _ {Y \mid X } ^ {2} \leq 1 $. |
| + | The equality $ \eta _ {Y \mid X } ^ {2} = 0 $ |
| + | corresponds to non-correlated random variables; $ \eta _ {Y \mid X } ^ {2} = 1 $ |
| + | if and only if there is an exact functional relationship between $ Y $ |
| + | and $ X $; |
| + | if $ Y $ |
| + | is linearly dependent on $ X $, |
| + | the correlation ratio coincides with the squared correlation coefficient. The correlation ratio is non-symmetric in $ X $ |
| + | and $ Y $, |
| + | and so, together with $ \eta _ {Y \mid X } ^ {2} $, |
| + | one considers $ \eta _ {X \mid Y } ^ {2} $( |
| + | the correlation ratio of $ X $ |
| + | relative to $ Y $, |
| + | defined analogously). There is no simple relationship between $ \eta _ {Y \mid X } ^ {2} $ |
| + | and $ \eta _ {X \mid Y } ^ {2} $. |
| + | See also [[Correlation (in statistics)|Correlation (in statistics)]]. |
A characteristic of dependence between random variables. The correlation ratio of a random variable $ Y $
relative to a random variable $ X $
is the expression
$$
\eta _ {Y \mid X } ^ {2} = \
1 - {\mathsf E} \left [
\frac{ {\mathsf D} ( Y \mid X) }{ {\mathsf D} Y }
\right ] ,
$$
where $ {\mathsf D} Y $
is the variance of $ Y $,
$ {\mathsf D} ( Y \mid X) $
is the conditional variance of $ Y $
given $ X $,
which characterizes the spread of $ Y $
about its conditional mathematical expectation $ {\mathsf E} ( Y \mid X) $
for a given value of $ X $.
Invariably, $ 0 \leq \eta _ {Y \mid X } ^ {2} \leq 1 $.
The equality $ \eta _ {Y \mid X } ^ {2} = 0 $
corresponds to non-correlated random variables; $ \eta _ {Y \mid X } ^ {2} = 1 $
if and only if there is an exact functional relationship between $ Y $
and $ X $;
if $ Y $
is linearly dependent on $ X $,
the correlation ratio coincides with the squared correlation coefficient. The correlation ratio is non-symmetric in $ X $
and $ Y $,
and so, together with $ \eta _ {Y \mid X } ^ {2} $,
one considers $ \eta _ {X \mid Y } ^ {2} $(
the correlation ratio of $ X $
relative to $ Y $,
defined analogously). There is no simple relationship between $ \eta _ {Y \mid X } ^ {2} $
and $ \eta _ {X \mid Y } ^ {2} $.
See also Correlation (in statistics).