Namespaces
Variants
Actions

Difference between revisions of "Conditional stability"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (typo)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
<!--
 +
c0245201.png
 +
$#A+1 = 225 n = 0
 +
$#C+1 = 225 : ~/encyclopedia/old_files/data/C024/C.0204520 Conditional stability
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of a point relative to a family of mappings
 
''of a point relative to a family of mappings
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245201.png" /></td> </tr></table>
+
$$ \tag{1 }
 +
\{ f _ {t} \} _ {f \in G  ^ {+}  } : \
 +
E  \rightarrow  E
 +
$$
  
 
''
 
''
  
Equicontinuity at this point of the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245202.png" /> of restrictions of the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245203.png" /> to a certain manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245204.png" /> imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245205.png" /> (with the induced metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245206.png" />); here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245207.png" /> is the set of real or integer non-negative numbers: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245208.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245209.png" />.
+
Equicontinuity at this point of the family $  \{ f _ {t} \mid  _ {V} \} _ {t \in G  ^ {+}  } $
 +
of restrictions of the mappings $  f _ {t} $
 +
to a certain manifold $  V $
 +
imbedded in $  E $(
 +
with the induced metric on $  V $);  
 +
here $  G  ^ {+} $
 +
is the set of real or integer non-negative numbers: $  G = \mathbf R $
 +
or $  G = \mathbf Z $.
  
The conditional stability of a point relative to a mapping is defined as the conditional stability relative to the family of non-negative powers of this mapping. The conditional stability of a point relative to a dynamical system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452010.png" /> is the conditional stability of this point relative to the family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452011.png" />. The conditional stability of a solution of an equation
+
The conditional stability of a point relative to a mapping is defined as the conditional stability relative to the family of non-negative powers of this mapping. The conditional stability of a point relative to a dynamical system $  f ^ { t } $
 +
is the conditional stability of this point relative to the family of mappings $  \{ f ^ { t } \} _ {t \in G  ^ {+}  } $.  
 +
The conditional stability of a solution of an equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452012.png" /></td> </tr></table>
+
$$
 +
x ( t + 1 )  = \
 +
g _ {t} x ( t)
 +
$$
  
given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452013.png" /> is the conditional stability of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452014.png" /> relative to the family of mappings
+
given on $  t _ {0} + \mathbf Z  ^ {+} $
 +
is the conditional stability of the point $  x _ {0} ( t _ {0} ) $
 +
relative to the family of mappings
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452015.png" /></td> </tr></table>
+
$$
 +
\left \{
 +
f _ {t}  \stackrel{\rm def}{=}\
 +
g _ {t _ {0}  + t } \dots g _ {t _ {0}  + 1 } g _ {t _ {0}  }
 +
\right \} _ {t \in \mathbf Z  ^ {+}  } .
 +
$$
  
The conditional stability of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452016.png" /> of a differential equation
+
The conditional stability of the solution $  x _ {0} ( \cdot ) $
 +
of a differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\dot{x}  = f ( x , t )
 +
$$
  
given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452018.png" /> is the conditional stability of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452019.png" /> relative to the family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452021.png" /> is the [[Cauchy operator|Cauchy operator]] of this equation. The conditional stability of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452022.png" /> of a differential equation of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452023.png" />,
+
given on $  t _ {0} + \mathbf R  ^ {+} $
 +
is the conditional stability of the point $  x _ {0} ( t _ {0} ) $
 +
relative to the family of mappings $  \{ X ( t _ {0} + t , t _ {0} ) \} _ {t \in \mathbf R  ^ {+}  } $,  
 +
where $  X ( \theta , \tau ) $
 +
is the [[Cauchy operator|Cauchy operator]] of this equation. The conditional stability of the solution $  y ( \cdot ) $
 +
of a differential equation of order $  m $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452024.png" /></td> </tr></table>
+
$$
 +
y  ^ {(} m)  = g ( y , \dot{y} \dots y  ^ {(} m- 1) , t )
 +
$$
  
given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452025.png" />, is the conditional stability of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452026.png" />, given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452027.png" />, of the corresponding first-order differential equation of the form (2), where
+
given on $  t _ {0} + \mathbf R  ^ {+} $,  
 +
is the conditional stability of the solution $  x ( \cdot ) = ( y ( \cdot ) , \dot{y} ( \cdot ) \dots y  ^ {(} m- 1) ( \cdot ) ) $,  
 +
given on $  t _ {0} + \mathbf R  ^ {+} $,  
 +
of the corresponding first-order differential equation of the form (2), where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452028.png" /></td> </tr></table>
+
$$
 +
= ( x _ {1} \dots x _ {m} ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452029.png" /></td> </tr></table>
+
$$
 +
f ( x , t )  = ( x _ {2} \dots x _ {m} , g ( x _ {1} \dots x _ {m} , t ) ).
 +
$$
  
 
The definitions 1)–5) below are some concrete examples of these and related notions.
 
The definitions 1)–5) below are some concrete examples of these and related notions.
  
1) Given a differential equation (2), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452030.png" /> is a normed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452031.png" />-dimensional vector space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452032.png" />. The solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452033.png" /> of this equation is called conditionally stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452035.png" /> if there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452036.png" />-dimensional disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452037.png" /> imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452038.png" /> (considered as a manifold of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452039.png" />), containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452040.png" /> and having the following property: For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452041.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452042.png" /> such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452043.png" /> satisfying the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452044.png" />, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452045.png" /> of the same equation satisfying the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452046.png" /> is uniquely defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452047.png" />, and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452048.png" /> satisfies the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452049.png" />. If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452050.png" /> with the given property may be chosen so that
+
1) Given a differential equation (2), where $  E $
 +
is a normed $  n $-
 +
dimensional vector space and $  x \in E $.  
 +
The solution $  x _ {0} ( \cdot ) : t _ {0} + \mathbf R  ^ {+} \rightarrow E $
 +
of this equation is called conditionally stable with index $  k \in \{ 0 \dots n \} $
 +
if there is a $  k $-
 +
dimensional disc $  D  ^ {k} $
 +
imbedded in $  E $(
 +
considered as a manifold of class $  C  ^ {m} $),  
 +
containing the point $  x _ {0} ( t _ {0} ) $
 +
and having the following property: For each $  \epsilon > 0 $
 +
there is a $  \delta > 0 $
 +
such that for every $  x \in D  ^ {k} $
 +
satisfying the inequality $  | x - x _ {0} ( t _ {0} ) | < \delta $,  
 +
the solution $  x ( \cdot ) $
 +
of the same equation satisfying the initial condition $  x ( t _ {0} ) = x $
 +
is uniquely defined on $  t _ {0} + \mathbf R  ^ {+} $,  
 +
and for each $  t \in t _ {0} + \mathbf R  ^ {+} $
 +
satisfies the inequality $  | x ( t) - x _ {0} ( t) | < \epsilon $.  
 +
If the disc $  D  ^ {k} $
 +
with the given property may be chosen so that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452051.png" /></td> </tr></table>
+
$$
 +
\lim\limits _
 +
{t \rightarrow + \infty } \
 +
| x ( t) - x _ {0} ( t) |  = 0
 +
$$
  
 
(respectively,
 
(respectively,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452052.png" /></td> </tr></table>
+
$$
 +
{\lim\limits _ {t \rightarrow + \infty } } bar \
 +
 
 +
\frac{1}{t}
 +
  \mathop{\rm ln}  | x ( t) - x _ {0} ( t) |  < 0 ;
 +
$$
  
here, and elsewhere is understood that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452053.png" />) for every solution of the same equations starting in this disc (i.e. such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452054.png" />), then the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452055.png" /> is called asymptotically (respectively, exponentially) conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452056.png" />).
+
here, and elsewhere is understood that $  \mathop{\rm ln}  0 = - \infty $)  
 +
for every solution of the same equations starting in this disc (i.e. such that $  x ( t _ {0} ) \in D  ^ {k} $),  
 +
then the solution $  x _ {0} ( t) $
 +
is called asymptotically (respectively, exponentially) conditionally stable (with index $  k $).
  
The solution of the equation (2) (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452057.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452058.png" />) is called conditionally (asymptotically, exponentially conditionally) stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452059.png" />, if it becomes such as the result of equipping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452060.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452061.png" />) with a suitable norm. This property of the solution does not depend on the choice of norm.
+
The solution of the equation (2) ( $  x \in \mathbf R  ^ {n} $
 +
or $  x \in \mathbf C  ^ {n} $)  
 +
is called conditionally (asymptotically, exponentially conditionally) stable with index $  k $,  
 +
if it becomes such as the result of equipping $  \mathbf R  ^ {n} $(
 +
or $  \mathbf C  ^ {n} $)  
 +
with a suitable norm. This property of the solution does not depend on the choice of norm.
  
2) Given an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452062.png" />-dimensional Riemannian manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452063.png" /> (the distance function on which is written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452064.png" />), one calls a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452065.png" /> conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452066.png" />) relative to a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452067.png" /> if there is a (usually smooth) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452068.png" />-dimensional disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452069.png" /> imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452070.png" />, containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452071.png" /> and having the following property: For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452072.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452073.png" /> such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452074.png" /> satisfying the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452075.png" />, the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452076.png" /> holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452077.png" />. If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452078.png" /> with the above property can be chosen so that
+
2) Given an $  n $-
 +
dimensional Riemannian manifold $  V  ^ {n} $(
 +
the distance function on which is written as $  d ( \cdot , \cdot ) $),  
 +
one calls a point $  x _ {0} \in V  ^ {n} $
 +
conditionally stable (with index $  k \in \{ 0 \dots n \} $)  
 +
relative to a mapping $  f : V  ^ {n} \rightarrow V  ^ {n} $
 +
if there is a (usually smooth) $  k $-
 +
dimensional disc $  D  ^ {k} $
 +
imbedded in $  V  ^ {n} $,  
 +
containing the point $  x _ {0} $
 +
and having the following property: For each $  \epsilon > 0 $
 +
there exists a $  \delta > 0 $
 +
such that for every $  x \in D  ^ {k} $
 +
satisfying the inequality $  d ( x , x _ {0} ) < \delta $,  
 +
the inequality $  d ( f ^ { t } x , f ^ { t } x _ {0} ) < \epsilon $
 +
holds for all $  t \in \mathbf N $.  
 +
If the disc $  D  ^ {k} $
 +
with the above property can be chosen so that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452079.png" /></td> </tr></table>
+
$$
 +
d ( f ^ { t } x , f ^ { t } x _ {0} )  \rightarrow  0 \ \
 +
\textrm{ as }  t \rightarrow + \infty
 +
$$
  
 
(respectively,
 
(respectively,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452080.png" /></td> </tr></table>
+
$$
 +
\left . {\lim\limits _ {t \rightarrow + \infty } } bar \
  
for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452081.png" />, then the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452082.png" /> is called asymptotically (respectively, exponentially) conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452083.png" />) relative to the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452084.png" />.
+
\frac{1}{t}
 +
  \mathop{\rm ln} \
 +
d ( f ^ { t } x , f ^ { t } x _ {0} ) < 0 \right )
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452085.png" /> be a compact differentiable manifold. A point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452086.png" /> is called conditionally stable (asymptotically, exponentially conditionally stable) with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452087.png" /> relative to a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452088.png" /> if it becomes such as a result of equipping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452089.png" /> with a suitable Riemannian metric. This property of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452090.png" /> does not depend on the choice of the Riemannian metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452091.png" />.
+
for each  $  x \in D  ^ {k} $,
 +
then the point $  x _ {0} $
 +
is called asymptotically (respectively, exponentially) conditionally stable (with index $  k $)
 +
relative to the mapping $  f $.
  
3) Consider the differential equation (2) on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452092.png" />-dimensional Riemannian (or Finsler, cf. [[Finsler geometry|Finsler geometry]]) manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452093.png" />, the distance function on which is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452094.png" />. The solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452095.png" /> of this equation is called conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452096.png" />) if there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452097.png" />-dimensional disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452098.png" /> imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452099.png" /> (considered as a manifold of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520100.png" />, where usually <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520101.png" />), containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520102.png" /> and having the following property: For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520103.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520104.png" /> such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520105.png" /> satisfying the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520106.png" />, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520107.png" /> of the same equation satisfying the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520108.png" /> is unique, defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520109.png" />, and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520110.png" /> satisfies the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520111.png" />. If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520112.png" /> with the above property may be taken so that
+
Let  $  V  ^ {n} $
 +
be a compact differentiable manifold. A point  $  x _ {0} \in V  ^ {n} $
 +
is called conditionally stable (asymptotically, exponentially conditionally stable) with index $  k $
 +
relative to a mapping  $  f : V  ^ {n} \rightarrow V  ^ {n} $
 +
if it becomes such as a result of equipping  $  V  ^ {n} $
 +
with a suitable Riemannian metric. This property of  $  x _ {0} $
 +
does not depend on the choice of the Riemannian metric on $  V  ^ {n} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520113.png" /></td> </tr></table>
+
3) Consider the differential equation (2) on an  $  n $-
 +
dimensional Riemannian (or Finsler, cf. [[Finsler geometry|Finsler geometry]]) manifold  $  V  ^ {n} $,
 +
the distance function on which is denoted by  $  d ( \cdot , \cdot ) $.
 +
The solution  $  x _ {0} ( \cdot ) :  t _ {0} + \mathbf R  ^ {+} \rightarrow V  ^ {n} $
 +
of this equation is called conditionally stable (with index  $  k $)
 +
if there is a  $  k $-
 +
dimensional disc  $  D  ^ {k} $
 +
imbedded in  $  V  ^ {n} $(
 +
considered as a manifold of class $  C  ^ {m} $,
 +
where usually  $  m \geq  1 $),
 +
containing the point  $  x _ {0} ( t _ {0} ) $
 +
and having the following property: For each  $  \epsilon > 0 $
 +
there exists a  $  \delta > 0 $
 +
such that for every  $  x \in D  ^ {k} $
 +
satisfying the inequality  $  d ( x , x _ {0} ( t _ {0} ) ) < \delta $,
 +
the solution  $  x ( \cdot ) $
 +
of the same equation satisfying the initial condition  $  x ( t _ {0} ) = x $
 +
is unique, defined on  $  t _ {0} + \mathbf R  ^ {+} $,
 +
and for each  $  t \in t _ {0} + \mathbf R  ^ {+} $
 +
satisfies the inequality  $  d ( x ( t) , x _ {0} ( t) ) < \epsilon $.
 +
If the disc  $  D  ^ {k} $
 +
with the above property may be taken so that
 +
 
 +
$$
 +
d ( x ( t) , x _ {0} ( t) )  \rightarrow  0 \ \
 +
\textrm{ as }  t \rightarrow + \infty
 +
$$
  
 
(respectively,
 
(respectively,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520114.png" /></td> </tr></table>
+
$$
 +
\left . {\lim\limits _ {t \rightarrow + \infty } } bar \
  
for every solution of the same equation starting in this disc (i.e. such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520115.png" />), then the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520116.png" /> is called asymptotically (respectively, exponentially) conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520117.png" />).
+
\frac{1}{t}
 +
  \mathop{\rm ln}  d ( x ( t) , x _ {0} ( t) ) < 0 \right )
 +
$$
  
4) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520118.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520119.png" />-dimensional manifold of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520120.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520121.png" /> be an open subset of it. Suppose that a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520122.png" /> is fixed under a family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520123.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520124.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520125.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520126.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520127.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520128.png" />). The fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520129.png" /> is called conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520130.png" />) relative to the family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520131.png" /> if there is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520132.png" />-dimensional disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520133.png" /> smoothly imbedded (by an imbedding of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520134.png" />) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520135.png" /> such that for every neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520136.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520137.png" /> there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520138.png" /> of the same point such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520139.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520140.png" />. If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520141.png" /> with this property may be taken so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520142.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520143.png" />, then the fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520144.png" /> is called asymptotically conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520145.png" />) relative to the family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520146.png" />.
+
for every solution of the same equation starting in this disc (i.e. such that $  x ( t _ {0} ) \in D  ^ {k} $),  
 +
then the solution  $  x _ {0} ( \cdot ) $
 +
is called asymptotically (respectively, exponentially) conditionally stable (with index $  k $).
  
5) The conditional (conditional asymptotic, conditional exponential) stability (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520147.png" />) of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520148.png" /> of an equation of arbitrary order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520149.png" />, is defined as the conditional (asymptotic, conditional exponential) stability (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520150.png" />) of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520151.png" /> of the corresponding first-order equation (2), where
+
4) Let  $  V  ^ {n} $
 +
be an  $  n $-
 +
dimensional manifold of class  $  C  ^ {m} $
 +
and let  $  U $
 +
be an open subset of it. Suppose that a point  $  x _ {0} \in U $
 +
is fixed under a family of mappings  $  f _ {t} :  U \rightarrow V  ^ {n} $
 +
of class  $  C  ^ {m} $(
 +
$  t \in G  ^ {+} $,  
 +
where  $  G $
 +
is  $  \mathbf R $
 +
or  $  \mathbf Z $).
 +
The fixed point  $  x _ {0} $
 +
is called conditionally stable (with index $  k $)  
 +
relative to the family of mappings  $  \{ f _ {t} \} _ {t \in G  ^ {+}  } $
 +
if there is  $  k $-
 +
dimensional disc  $  D  ^ {k} $
 +
smoothly imbedded (by an imbedding of class  $  C  ^ {m} $)
 +
in  $  V  ^ {n} $
 +
such that for every neighbourhood  $  V \subset  V  ^ {n} $
 +
of  $  x _ {0} $
 +
there is a neighbourhood  $  W $
 +
of the same point such that  $  f _ {t} ( D  ^ {k} \cap W ) \subset  V $
 +
for every  $  t \in G  ^ {+} $.
 +
If the disc  $  D  ^ {k} $
 +
with this property may be taken so that  $  \lim\limits _ {t \rightarrow + \infty }  f _ {t} x = x _ {0} $
 +
for every  $  x \in D  ^ {k} $,
 +
then the fixed point  $  x _ {0} $
 +
is called asymptotically conditionally stable (with index  $  k $)  
 +
relative to the family of mappings  $  \{ f _ {t} \} _ {t \in G  ^ {+}  } $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520152.png" /></td> </tr></table>
+
5) The conditional (conditional asymptotic, conditional exponential) stability (with index  $  k $)
 +
of the solution  $  y _ {0} ( \cdot ) $
 +
of an equation of arbitrary order  $  y  ^ {(} m) = g ( y , \dot{y} \dots y  ^ {(} m- 1) , t ) $,
 +
is defined as the conditional (asymptotic, conditional exponential) stability (with index  $  k $)
 +
of the solution  $  x _ {0} ( \cdot ) = ( y _ {0} ( \cdot ) , \dot{y} _ {0} ( \cdot ) \dots y _ {0}  ^ {(} m- 1) ( \cdot )) $
 +
of the corresponding first-order equation (2), where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520153.png" /></td> </tr></table>
+
$$
 +
= ( x _ {1} \dots x _ {m} ) ,
 +
$$
  
Sometimes (cf. e.g. [[#References|[3]]]) in defining conditional stability one requires the index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520154.png" /> to be non-zero: conditional stability with index zero always holds. Conditional stability (conditional asymptotic, conditional exponential stability) with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520155.png" /> (the dimension of the phase space) is the same as [[Lyapunov stability|Lyapunov stability]] (respectively, asymptotic, exponential stability).
+
$$
 +
f ( x , t ) = ( x _ {2} \dots x _ {m} , g ( x _ {1} \dots x _ {m} , t ) ) .
 +
$$
  
The equilibrium positions under conditional stability have been investigated. Suppose that in a neighbourhood of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520156.png" /> an autonomous differential equation
+
Sometimes (cf. e.g. [[#References|[3]]]) in defining conditional stability one requires the index  $  k $
 +
to be non-zero: conditional stability with index zero always holds. Conditional stability (conditional asymptotic, conditional exponential stability) with index  $  n $(
 +
the dimension of the phase space) is the same as [[Lyapunov stability|Lyapunov stability]] (respectively, asymptotic, exponential stability).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520157.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
The equilibrium positions under conditional stability have been investigated. Suppose that in a neighbourhood of a point  $  x _ {0} \in \mathbf R  ^ {n} $
 +
an autonomous differential equation
  
is given, the right-hand side of which is continuously differentiable and vanishes at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520158.png" />. If in the open left half-plane in the complex plane there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520159.png" /> eigen values of the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520160.png" />, then this fixed point of equation (3) is conditionally exponentially stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520161.png" /> (Lyapunov's theorem on conditional stability). For example, the upper equilibrium position <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520162.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520163.png" /> of the equation of oscillation of a pendulum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520164.png" /> is exponentially conditionally stable with index 1, because one of the roots of the characteristic equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520165.png" /> of the variational equation (cf. [[Variational equations|Variational equations]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520166.png" /> is negative.
+
$$ \tag{3 }
 +
\dot{x}  = f ( x)
 +
$$
  
A fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520167.png" /> of a differentiable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520168.png" /> is exponentially conditionally stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520169.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520170.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520171.png" /> eigen values of the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520172.png" /> lie in the open unit disc. A periodic point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520173.png" /> of a differential mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520174.png" />, having period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520175.png" />, is conditionally (asymptotically conditionally, exponentially conditionally) stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520176.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520177.png" /> if and only if it has this property relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520178.png" />.
+
is given, the right-hand side of which is continuously differentiable and vanishes at the point $  x _ {0} $.  
 +
If in the open left half-plane in the complex plane there are  $  k $
 +
eigen values of the derivative  $  d f _ {x _ {0}  } $,
 +
then this fixed point of equation (3) is conditionally exponentially stable with index $  k $(
 +
Lyapunov's theorem on conditional stability). For example, the upper equilibrium position  $  y = \pi $,
 +
$  \dot{y} = 0 $
 +
of the equation of oscillation of a pendulum  $  \dot{y} dot = \omega  ^ {2}  \sin  y = 0 $
 +
is exponentially conditionally stable with index 1, because one of the roots of the characteristic equation  $  \lambda  ^ {2} - \omega  ^ {2} = 0 $
 +
of the variational equation (cf. [[Variational equations|Variational equations]])  $  \dot{y} dot - \omega  ^ {2} y = 0 $
 +
is negative.
  
A periodic solution of an autonomous differential equation (3) with smooth right-hand side <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520179.png" /> having period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520180.png" /> is (asymptotically, exponentially) conditionally stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520181.png" /> if and only if its value at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520182.png" /> is (respectively, asymptotically, exponentially) conditionally stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520183.png" /> relative to the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520184.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520185.png" /> is the Cauchy operator of (3).
+
A fixed point  $  x _ {0} $
 +
of a differentiable mapping  $  f : \mathbf R  ^ {n} \rightarrow \mathbf R  ^ {n} $
 +
is exponentially conditionally stable with index $  k $
 +
relative to  $  f $
 +
if  $  k $
 +
eigen values of the derivative  $  d f _ {x _ {0}  } $
 +
lie in the open unit disc. A periodic point $  x _ {0} $
 +
of a differential mapping  $  f : \mathbf R  ^ {n} \rightarrow \mathbf R  ^ {n} $,
 +
having period  $  m $,
 +
is conditionally (asymptotically conditionally, exponentially conditionally) stable with index $  k $
 +
relative to  $  f $
 +
if and only if it has this property relative to $  f ^ { m } $.
  
The example of O. Perron (cf. [[Lyapunov stability|Lyapunov stability]]) shows that the negativity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520186.png" /> Lyapunov exponents of the variational equation along the solution of (3) does not imply the conditional stability with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520187.png" /> of this solution. However, one has the following theorem, which shows that the situation described be Perron's example is not generic.
+
A periodic solution of an autonomous differential equation (3) with smooth right-hand side  $  f ( x) $
 +
having period  $  T $
 +
is (asymptotically, exponentially) conditionally stable with index  $  k $
 +
if and only if its value at the point  $  t = 0 $
 +
is (respectively, asymptotically, exponentially) conditionally stable with index $  k $
 +
relative to the mapping  $  X ( T , 0 ) $,  
 +
where  $  X ( \theta , \tau ) $
 +
is the Cauchy operator of (3).
  
1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520188.png" /> be the set of all diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520189.png" /> of a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520190.png" /> having uniformly continuous derivatives satisfying the inequality
+
The example of O. Perron (cf. [[Lyapunov stability|Lyapunov stability]]) shows that the negativity of  $  k $
 +
Lyapunov exponents of the variational equation along the solution of (3) does not imply the conditional stability with index  $  k $
 +
of this solution. However, one has the following theorem, which shows that the situation described be Perron's example is not generic.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520191.png" /></td> </tr></table>
+
1) Let  $  S $
 +
be the set of all diffeomorphisms  $  f $
 +
of a Euclidean space  $  E  ^ {n} $
 +
having uniformly continuous derivatives satisfying the inequality
  
For every diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520192.png" /> denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520193.png" /> the set of diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520194.png" /> satisfying the inequality
+
$$
 +
\sup _
 +
{x \in E  ^ {n} } \
 +
\max
 +
\{ \| d f _ {x} \| , \| ( d f _ {x} )  ^ {-} 1 \| \}
 +
< + \infty .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520195.png" /></td> </tr></table>
+
For every diffeomorphism  $  j \in S $
 +
denote by  $  S _ {j} $
 +
the set of diffeomorphisms  $  f \in S $
 +
satisfying the inequality
  
on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520196.png" /> the distance function
+
$$
 +
\sup _
 +
{x \in E  ^ {n} } \
 +
| f x - j x |
 +
< + \infty ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520197.png" /></td> </tr></table>
+
on the set  $  S _ {j} $
 +
the distance function
 +
 
 +
$$
 +
d ( f , g )  = \
 +
\sup _
 +
{x \in E  ^ {n} } \
 +
( | f x - g x | +
 +
\| d f _ {x} - d g _ {x} \| )
 +
$$
  
 
is given.
 
is given.
  
Fir each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520198.png" /> one has in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520199.png" /> an everywhere-dense set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520200.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520201.png" /> with the following property: For every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520202.png" /> the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520203.png" /> is exponentially conditionally stable relative to the diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520204.png" /> with index
+
Fir each $  j \in S $
 +
one has in $  S _ {j} \times E  ^ {n} $
 +
an everywhere-dense set $  D _ {j} $
 +
of type $  G _  \delta  $
 +
with the following property: For every $  ( f , x ) \in D _ {j} $
 +
the point $  x $
 +
is exponentially conditionally stable relative to the diffeomorphism $  f $
 +
with index
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520205.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm dim} \
 +
\left \{ {
 +
\mathfrak r \in T _ {x} E  ^ {n} } : { {\lim\limits _ {m \rightarrow + \infty } } bar \
 +
 
 +
\frac{1}{m}
 +
  \mathop{\rm ln}  | d f ^ { m } \mathfrak r | < 0
 +
} \right \}
 +
,
 +
$$
  
 
i.e. with index equal to the number of negative Lyapunov characteristic exponents of the variational equation (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]).
 
i.e. with index equal to the number of negative Lyapunov characteristic exponents of the variational equation (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]).
  
2) For a dynamical system given on a closed differentiable manifold, analogous theorems can be formulated in a way that is more simple and invariant from the point of view of differential topology. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520206.png" /> be a closed differentiable manifold. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520207.png" /> of all diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520208.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520209.png" /> mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520210.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520211.png" /> is equipped with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520212.png" />-topology. In the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520213.png" /> there is an everywhere-dense set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520214.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520215.png" /> with the following property: For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520216.png" /> the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520217.png" /> is exponentially conditionally stable relative to the diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520218.png" /> with index
+
2) For a dynamical system given on a closed differentiable manifold, analogous theorems can be formulated in a way that is more simple and invariant from the point of view of differential topology. Let $  V  ^ {n} $
 +
be a closed differentiable manifold. The set $  S $
 +
of all diffeomorphisms $  f $
 +
of class $  C  ^ {1} $
 +
mapping $  V  ^ {n} $
 +
onto $  V  ^ {n} $
 +
is equipped with the $  C  ^ {1} $-
 +
topology. In the space $  S \times V  ^ {n} $
 +
there is an everywhere-dense set $  D $
 +
of type $  G _  \delta  $
 +
with the following property: For each $  ( f , x ) \in D $
 +
the point $  x $
 +
is exponentially conditionally stable relative to the diffeomorphism $  f $
 +
with index
 +
 
 +
$$ \tag{4 }
 +
k ( x)  =   \mathop{\rm dim} \
 +
\left \{ {
 +
\mathfrak r \in T _ {x} V  ^ {n} } : { {\lim\limits _ {m \rightarrow + \infty } } bar \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520219.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
\frac{1}{m}
 +
  \mathop{\rm ln}  | d f ^ { m } \mathfrak r | < 0
 +
} \right \}
 +
.
 +
$$
  
3) For every diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520220.png" /> of a closed differentiable manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520221.png" /> and for every probability distribution on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520222.png" /> that is invariant relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520223.png" /> (and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520224.png" />-algebra of which contains all Borel sets), the set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520225.png" /> that are exponentially conditionally stable with index (4) relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520226.png" /> has probability 1.
+
3) For every diffeomorphism $  f : V  ^ {n} \rightarrow V  ^ {n} $
 +
of a closed differentiable manifold $  V  ^ {n} $
 +
and for every probability distribution on $  V  ^ {n} $
 +
that is invariant relative to $  f $(
 +
and the $  \sigma $-
 +
algebra of which contains all Borel sets), the set of points $  x \in V  ^ {n} $
 +
that are exponentially conditionally stable with index (4) relative to $  f $
 +
has probability 1.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.M. Lyapunov,  "Collected works" , '''2''' , Moscow-Leningrad  (1956)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.F. Bylov,  R.E. Vinograd,  D.M. Grobman,  V.V. Nemytskii,  "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.P. Demidovich,  "Lectures on the mathematical theory of stability" , Moscow  (1967)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.A. Izobov,  "Linear systems of ordinary differential equations"  ''J. Soviet Math.'' , '''5''' :  1  pp. 46–96  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12'''  (1974)  pp. 71–146</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  Ya.B. Pesin,  "Characteristic Lyapunov exponents and smooth ergodic theory"  ''Russian Math. Surveys'' , '''32''' :  4  (1977)  pp. 55–114  ''Uspekhi Mat. Nauk'' , '''32''' :  4  (1977)  pp. 55–112</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.M. Lyapunov,  "Collected works" , '''2''' , Moscow-Leningrad  (1956)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.F. Bylov,  R.E. Vinograd,  D.M. Grobman,  V.V. Nemytskii,  "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B.P. Demidovich,  "Lectures on the mathematical theory of stability" , Moscow  (1967)  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.A. Izobov,  "Linear systems of ordinary differential equations"  ''J. Soviet Math.'' , '''5''' :  1  pp. 46–96  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12'''  (1974)  pp. 71–146</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  Ya.B. Pesin,  "Characteristic Lyapunov exponents and smooth ergodic theory"  ''Russian Math. Surveys'' , '''32''' :  4  (1977)  pp. 55–114  ''Uspekhi Mat. Nauk'' , '''32''' :  4  (1977)  pp. 55–112</TD></TR></table>

Latest revision as of 16:47, 5 June 2020


of a point relative to a family of mappings

$$ \tag{1 } \{ f _ {t} \} _ {f \in G ^ {+} } : \ E \rightarrow E $$

Equicontinuity at this point of the family $ \{ f _ {t} \mid _ {V} \} _ {t \in G ^ {+} } $ of restrictions of the mappings $ f _ {t} $ to a certain manifold $ V $ imbedded in $ E $( with the induced metric on $ V $); here $ G ^ {+} $ is the set of real or integer non-negative numbers: $ G = \mathbf R $ or $ G = \mathbf Z $.

The conditional stability of a point relative to a mapping is defined as the conditional stability relative to the family of non-negative powers of this mapping. The conditional stability of a point relative to a dynamical system $ f ^ { t } $ is the conditional stability of this point relative to the family of mappings $ \{ f ^ { t } \} _ {t \in G ^ {+} } $. The conditional stability of a solution of an equation

$$ x ( t + 1 ) = \ g _ {t} x ( t) $$

given on $ t _ {0} + \mathbf Z ^ {+} $ is the conditional stability of the point $ x _ {0} ( t _ {0} ) $ relative to the family of mappings

$$ \left \{ f _ {t} \stackrel{\rm def}{=}\ g _ {t _ {0} + t } \dots g _ {t _ {0} + 1 } g _ {t _ {0} } \right \} _ {t \in \mathbf Z ^ {+} } . $$

The conditional stability of the solution $ x _ {0} ( \cdot ) $ of a differential equation

$$ \tag{2 } \dot{x} = f ( x , t ) $$

given on $ t _ {0} + \mathbf R ^ {+} $ is the conditional stability of the point $ x _ {0} ( t _ {0} ) $ relative to the family of mappings $ \{ X ( t _ {0} + t , t _ {0} ) \} _ {t \in \mathbf R ^ {+} } $, where $ X ( \theta , \tau ) $ is the Cauchy operator of this equation. The conditional stability of the solution $ y ( \cdot ) $ of a differential equation of order $ m $,

$$ y ^ {(} m) = g ( y , \dot{y} \dots y ^ {(} m- 1) , t ) $$

given on $ t _ {0} + \mathbf R ^ {+} $, is the conditional stability of the solution $ x ( \cdot ) = ( y ( \cdot ) , \dot{y} ( \cdot ) \dots y ^ {(} m- 1) ( \cdot ) ) $, given on $ t _ {0} + \mathbf R ^ {+} $, of the corresponding first-order differential equation of the form (2), where

$$ x = ( x _ {1} \dots x _ {m} ) , $$

$$ f ( x , t ) = ( x _ {2} \dots x _ {m} , g ( x _ {1} \dots x _ {m} , t ) ). $$

The definitions 1)–5) below are some concrete examples of these and related notions.

1) Given a differential equation (2), where $ E $ is a normed $ n $- dimensional vector space and $ x \in E $. The solution $ x _ {0} ( \cdot ) : t _ {0} + \mathbf R ^ {+} \rightarrow E $ of this equation is called conditionally stable with index $ k \in \{ 0 \dots n \} $ if there is a $ k $- dimensional disc $ D ^ {k} $ imbedded in $ E $( considered as a manifold of class $ C ^ {m} $), containing the point $ x _ {0} ( t _ {0} ) $ and having the following property: For each $ \epsilon > 0 $ there is a $ \delta > 0 $ such that for every $ x \in D ^ {k} $ satisfying the inequality $ | x - x _ {0} ( t _ {0} ) | < \delta $, the solution $ x ( \cdot ) $ of the same equation satisfying the initial condition $ x ( t _ {0} ) = x $ is uniquely defined on $ t _ {0} + \mathbf R ^ {+} $, and for each $ t \in t _ {0} + \mathbf R ^ {+} $ satisfies the inequality $ | x ( t) - x _ {0} ( t) | < \epsilon $. If the disc $ D ^ {k} $ with the given property may be chosen so that

$$ \lim\limits _ {t \rightarrow + \infty } \ | x ( t) - x _ {0} ( t) | = 0 $$

(respectively,

$$ {\lim\limits _ {t \rightarrow + \infty } } bar \ \frac{1}{t} \mathop{\rm ln} | x ( t) - x _ {0} ( t) | < 0 ; $$

here, and elsewhere is understood that $ \mathop{\rm ln} 0 = - \infty $) for every solution of the same equations starting in this disc (i.e. such that $ x ( t _ {0} ) \in D ^ {k} $), then the solution $ x _ {0} ( t) $ is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $).

The solution of the equation (2) ( $ x \in \mathbf R ^ {n} $ or $ x \in \mathbf C ^ {n} $) is called conditionally (asymptotically, exponentially conditionally) stable with index $ k $, if it becomes such as the result of equipping $ \mathbf R ^ {n} $( or $ \mathbf C ^ {n} $) with a suitable norm. This property of the solution does not depend on the choice of norm.

2) Given an $ n $- dimensional Riemannian manifold $ V ^ {n} $( the distance function on which is written as $ d ( \cdot , \cdot ) $), one calls a point $ x _ {0} \in V ^ {n} $ conditionally stable (with index $ k \in \{ 0 \dots n \} $) relative to a mapping $ f : V ^ {n} \rightarrow V ^ {n} $ if there is a (usually smooth) $ k $- dimensional disc $ D ^ {k} $ imbedded in $ V ^ {n} $, containing the point $ x _ {0} $ and having the following property: For each $ \epsilon > 0 $ there exists a $ \delta > 0 $ such that for every $ x \in D ^ {k} $ satisfying the inequality $ d ( x , x _ {0} ) < \delta $, the inequality $ d ( f ^ { t } x , f ^ { t } x _ {0} ) < \epsilon $ holds for all $ t \in \mathbf N $. If the disc $ D ^ {k} $ with the above property can be chosen so that

$$ d ( f ^ { t } x , f ^ { t } x _ {0} ) \rightarrow 0 \ \ \textrm{ as } t \rightarrow + \infty $$

(respectively,

$$ \left . {\lim\limits _ {t \rightarrow + \infty } } bar \ \frac{1}{t} \mathop{\rm ln} \ d ( f ^ { t } x , f ^ { t } x _ {0} ) < 0 \right ) $$

for each $ x \in D ^ {k} $, then the point $ x _ {0} $ is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $) relative to the mapping $ f $.

Let $ V ^ {n} $ be a compact differentiable manifold. A point $ x _ {0} \in V ^ {n} $ is called conditionally stable (asymptotically, exponentially conditionally stable) with index $ k $ relative to a mapping $ f : V ^ {n} \rightarrow V ^ {n} $ if it becomes such as a result of equipping $ V ^ {n} $ with a suitable Riemannian metric. This property of $ x _ {0} $ does not depend on the choice of the Riemannian metric on $ V ^ {n} $.

3) Consider the differential equation (2) on an $ n $- dimensional Riemannian (or Finsler, cf. Finsler geometry) manifold $ V ^ {n} $, the distance function on which is denoted by $ d ( \cdot , \cdot ) $. The solution $ x _ {0} ( \cdot ) : t _ {0} + \mathbf R ^ {+} \rightarrow V ^ {n} $ of this equation is called conditionally stable (with index $ k $) if there is a $ k $- dimensional disc $ D ^ {k} $ imbedded in $ V ^ {n} $( considered as a manifold of class $ C ^ {m} $, where usually $ m \geq 1 $), containing the point $ x _ {0} ( t _ {0} ) $ and having the following property: For each $ \epsilon > 0 $ there exists a $ \delta > 0 $ such that for every $ x \in D ^ {k} $ satisfying the inequality $ d ( x , x _ {0} ( t _ {0} ) ) < \delta $, the solution $ x ( \cdot ) $ of the same equation satisfying the initial condition $ x ( t _ {0} ) = x $ is unique, defined on $ t _ {0} + \mathbf R ^ {+} $, and for each $ t \in t _ {0} + \mathbf R ^ {+} $ satisfies the inequality $ d ( x ( t) , x _ {0} ( t) ) < \epsilon $. If the disc $ D ^ {k} $ with the above property may be taken so that

$$ d ( x ( t) , x _ {0} ( t) ) \rightarrow 0 \ \ \textrm{ as } t \rightarrow + \infty $$

(respectively,

$$ \left . {\lim\limits _ {t \rightarrow + \infty } } bar \ \frac{1}{t} \mathop{\rm ln} d ( x ( t) , x _ {0} ( t) ) < 0 \right ) $$

for every solution of the same equation starting in this disc (i.e. such that $ x ( t _ {0} ) \in D ^ {k} $), then the solution $ x _ {0} ( \cdot ) $ is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $).

4) Let $ V ^ {n} $ be an $ n $- dimensional manifold of class $ C ^ {m} $ and let $ U $ be an open subset of it. Suppose that a point $ x _ {0} \in U $ is fixed under a family of mappings $ f _ {t} : U \rightarrow V ^ {n} $ of class $ C ^ {m} $( $ t \in G ^ {+} $, where $ G $ is $ \mathbf R $ or $ \mathbf Z $). The fixed point $ x _ {0} $ is called conditionally stable (with index $ k $) relative to the family of mappings $ \{ f _ {t} \} _ {t \in G ^ {+} } $ if there is $ k $- dimensional disc $ D ^ {k} $ smoothly imbedded (by an imbedding of class $ C ^ {m} $) in $ V ^ {n} $ such that for every neighbourhood $ V \subset V ^ {n} $ of $ x _ {0} $ there is a neighbourhood $ W $ of the same point such that $ f _ {t} ( D ^ {k} \cap W ) \subset V $ for every $ t \in G ^ {+} $. If the disc $ D ^ {k} $ with this property may be taken so that $ \lim\limits _ {t \rightarrow + \infty } f _ {t} x = x _ {0} $ for every $ x \in D ^ {k} $, then the fixed point $ x _ {0} $ is called asymptotically conditionally stable (with index $ k $) relative to the family of mappings $ \{ f _ {t} \} _ {t \in G ^ {+} } $.

5) The conditional (conditional asymptotic, conditional exponential) stability (with index $ k $) of the solution $ y _ {0} ( \cdot ) $ of an equation of arbitrary order $ y ^ {(} m) = g ( y , \dot{y} \dots y ^ {(} m- 1) , t ) $, is defined as the conditional (asymptotic, conditional exponential) stability (with index $ k $) of the solution $ x _ {0} ( \cdot ) = ( y _ {0} ( \cdot ) , \dot{y} _ {0} ( \cdot ) \dots y _ {0} ^ {(} m- 1) ( \cdot )) $ of the corresponding first-order equation (2), where

$$ x = ( x _ {1} \dots x _ {m} ) , $$

$$ f ( x , t ) = ( x _ {2} \dots x _ {m} , g ( x _ {1} \dots x _ {m} , t ) ) . $$

Sometimes (cf. e.g. [3]) in defining conditional stability one requires the index $ k $ to be non-zero: conditional stability with index zero always holds. Conditional stability (conditional asymptotic, conditional exponential stability) with index $ n $( the dimension of the phase space) is the same as Lyapunov stability (respectively, asymptotic, exponential stability).

The equilibrium positions under conditional stability have been investigated. Suppose that in a neighbourhood of a point $ x _ {0} \in \mathbf R ^ {n} $ an autonomous differential equation

$$ \tag{3 } \dot{x} = f ( x) $$

is given, the right-hand side of which is continuously differentiable and vanishes at the point $ x _ {0} $. If in the open left half-plane in the complex plane there are $ k $ eigen values of the derivative $ d f _ {x _ {0} } $, then this fixed point of equation (3) is conditionally exponentially stable with index $ k $( Lyapunov's theorem on conditional stability). For example, the upper equilibrium position $ y = \pi $, $ \dot{y} = 0 $ of the equation of oscillation of a pendulum $ \dot{y} dot = \omega ^ {2} \sin y = 0 $ is exponentially conditionally stable with index 1, because one of the roots of the characteristic equation $ \lambda ^ {2} - \omega ^ {2} = 0 $ of the variational equation (cf. Variational equations) $ \dot{y} dot - \omega ^ {2} y = 0 $ is negative.

A fixed point $ x _ {0} $ of a differentiable mapping $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ is exponentially conditionally stable with index $ k $ relative to $ f $ if $ k $ eigen values of the derivative $ d f _ {x _ {0} } $ lie in the open unit disc. A periodic point $ x _ {0} $ of a differential mapping $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $, having period $ m $, is conditionally (asymptotically conditionally, exponentially conditionally) stable with index $ k $ relative to $ f $ if and only if it has this property relative to $ f ^ { m } $.

A periodic solution of an autonomous differential equation (3) with smooth right-hand side $ f ( x) $ having period $ T $ is (asymptotically, exponentially) conditionally stable with index $ k $ if and only if its value at the point $ t = 0 $ is (respectively, asymptotically, exponentially) conditionally stable with index $ k $ relative to the mapping $ X ( T , 0 ) $, where $ X ( \theta , \tau ) $ is the Cauchy operator of (3).

The example of O. Perron (cf. Lyapunov stability) shows that the negativity of $ k $ Lyapunov exponents of the variational equation along the solution of (3) does not imply the conditional stability with index $ k $ of this solution. However, one has the following theorem, which shows that the situation described be Perron's example is not generic.

1) Let $ S $ be the set of all diffeomorphisms $ f $ of a Euclidean space $ E ^ {n} $ having uniformly continuous derivatives satisfying the inequality

$$ \sup _ {x \in E ^ {n} } \ \max \{ \| d f _ {x} \| , \| ( d f _ {x} ) ^ {-} 1 \| \} < + \infty . $$

For every diffeomorphism $ j \in S $ denote by $ S _ {j} $ the set of diffeomorphisms $ f \in S $ satisfying the inequality

$$ \sup _ {x \in E ^ {n} } \ | f x - j x | < + \infty ; $$

on the set $ S _ {j} $ the distance function

$$ d ( f , g ) = \ \sup _ {x \in E ^ {n} } \ ( | f x - g x | + \| d f _ {x} - d g _ {x} \| ) $$

is given.

Fir each $ j \in S $ one has in $ S _ {j} \times E ^ {n} $ an everywhere-dense set $ D _ {j} $ of type $ G _ \delta $ with the following property: For every $ ( f , x ) \in D _ {j} $ the point $ x $ is exponentially conditionally stable relative to the diffeomorphism $ f $ with index

$$ \mathop{\rm dim} \ \left \{ { \mathfrak r \in T _ {x} E ^ {n} } : { {\lim\limits _ {m \rightarrow + \infty } } bar \ \frac{1}{m} \mathop{\rm ln} | d f ^ { m } \mathfrak r | < 0 } \right \} , $$

i.e. with index equal to the number of negative Lyapunov characteristic exponents of the variational equation (cf. Lyapunov characteristic exponent).

2) For a dynamical system given on a closed differentiable manifold, analogous theorems can be formulated in a way that is more simple and invariant from the point of view of differential topology. Let $ V ^ {n} $ be a closed differentiable manifold. The set $ S $ of all diffeomorphisms $ f $ of class $ C ^ {1} $ mapping $ V ^ {n} $ onto $ V ^ {n} $ is equipped with the $ C ^ {1} $- topology. In the space $ S \times V ^ {n} $ there is an everywhere-dense set $ D $ of type $ G _ \delta $ with the following property: For each $ ( f , x ) \in D $ the point $ x $ is exponentially conditionally stable relative to the diffeomorphism $ f $ with index

$$ \tag{4 } k ( x) = \mathop{\rm dim} \ \left \{ { \mathfrak r \in T _ {x} V ^ {n} } : { {\lim\limits _ {m \rightarrow + \infty } } bar \ \frac{1}{m} \mathop{\rm ln} | d f ^ { m } \mathfrak r | < 0 } \right \} . $$

3) For every diffeomorphism $ f : V ^ {n} \rightarrow V ^ {n} $ of a closed differentiable manifold $ V ^ {n} $ and for every probability distribution on $ V ^ {n} $ that is invariant relative to $ f $( and the $ \sigma $- algebra of which contains all Borel sets), the set of points $ x \in V ^ {n} $ that are exponentially conditionally stable with index (4) relative to $ f $ has probability 1.

References

[1] A.M. Lyapunov, "Collected works" , 2 , Moscow-Leningrad (1956) (In Russian)
[2] B.F. Bylov, R.E. Vinograd, D.M. Grobman, V.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian)
[3] B.P. Demidovich, "Lectures on the mathematical theory of stability" , Moscow (1967) (In Russian)
[4] N.A. Izobov, "Linear systems of ordinary differential equations" J. Soviet Math. , 5 : 1 pp. 46–96 Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 71–146
[5] Ya.B. Pesin, "Characteristic Lyapunov exponents and smooth ergodic theory" Russian Math. Surveys , 32 : 4 (1977) pp. 55–114 Uspekhi Mat. Nauk , 32 : 4 (1977) pp. 55–112
How to Cite This Entry:
Conditional stability. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conditional_stability&oldid=16572
This article was adapted from an original article by V.M. Millionshchikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article