Namespaces
Variants
Actions

Difference between revisions of "Consistent test"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0252501.png
 +
$#A+1 = 93 n = 0
 +
$#C+1 = 93 : ~/encyclopedia/old_files/data/C025/C.0205250 Consistent test,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''consistent statistical test''
 
''consistent statistical test''
  
 
A [[Statistical test|statistical test]] that reliably distinguishes a hypothesis to be tested from an alternative by increasing the number of observations to infinity.
 
A [[Statistical test|statistical test]] that reliably distinguishes a hypothesis to be tested from an alternative by increasing the number of observations to infinity.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252501.png" /> be a sequence of independent identically-distributed random variables taking values in a sample space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252502.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252503.png" />, and suppose one is testing the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252504.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252505.png" /> against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252506.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252507.png" />, with an error of the first kind (see [[Significance level|Significance level]]) being given in advance and equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252508.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252509.png" />). Suppose that the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525010.png" /> observations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525011.png" /> are used to construct a statistical test of level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525012.png" /> for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525013.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525014.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525016.png" />, be its power function (cf. [[Power function of a test|Power function of a test]]), which gives for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525017.png" /> the probability that this test rejects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525018.png" /> when the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525019.png" /> is subject to the law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525020.png" />. Of course <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525021.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525022.png" />. By increasing the number of observations without limit it is possible to construct a sequence of statistical tests of a prescribed level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525023.png" /> intended to test <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525024.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525025.png" />; the corresponding sequence of power functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525026.png" /> satisfies the condition
+
Let $  X _ {1} \dots X _ {n} $
 +
be a sequence of independent identically-distributed random variables taking values in a sample space $  ( \mathfrak X , {\mathcal B} , {\mathsf P} _  \theta  ) $,  
 +
$  \theta \in \Theta $,  
 +
and suppose one is testing the hypothesis $  H _ {0} $:  
 +
$  \theta \in \Theta _ {0} \subset  \Theta $
 +
against the alternative $  H _ {1} $:  
 +
$  \theta \in \Theta _ {1} = \Theta \setminus  \Theta _ {0} $,  
 +
with an error of the first kind (see [[Significance level|Significance level]]) being given in advance and equal to $  \alpha $(
 +
$  0 < \alpha < 0.5 $).  
 +
Suppose that the first $  n $
 +
observations $  X _ {1} \dots X _ {n} $
 +
are used to construct a statistical test of level $  \alpha $
 +
for testing $  H _ {0} $
 +
against $  H _ {1} $,  
 +
and let $  \beta _ {n} ( \theta ) $,  
 +
$  \theta \in \Theta $,  
 +
be its power function (cf. [[Power function of a test|Power function of a test]]), which gives for every $  \theta $
 +
the probability that this test rejects $  H _ {0} $
 +
when the random variable $  X _ {i} $
 +
is subject to the law $  {\mathsf P} _  \theta  $.  
 +
Of course $  \beta _ {n} ( \theta ) \leq  \alpha $
 +
for all $  \theta \in \Theta $.  
 +
By increasing the number of observations without limit it is possible to construct a sequence of statistical tests of a prescribed level $  \alpha $
 +
intended to test $  H _ {0} $
 +
against $  H _ {1} $;  
 +
the corresponding sequence of power functions $  \{ \beta _ {n} ( \theta ) \} $
 +
satisfies the condition
 +
 
 +
$$
 +
\beta _ {n} ( \theta )  \leq  \alpha \ \
 +
\textrm{ for }  \textrm{ any }  n \
 +
\textrm{ and }  \textrm{ all } \
 +
\theta \in \Theta _ {0} .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525027.png" /></td> </tr></table>
+
If under these conditions the sequence of power functions  $  \{ \beta _ {n} ( \theta ) \} $
 +
is such that, for any fixed  $  \theta \in \Theta _ {1} = \Theta \setminus  \Theta _ {0} $,
  
If under these conditions the sequence of power functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525028.png" /> is such that, for any fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525029.png" />,
+
$$
 +
\lim\limits _ {n \rightarrow \infty } \
 +
\beta _ {n} ( \theta )  = 1,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525030.png" /></td> </tr></table>
+
then one says that a consistent sequence of statistical tests of level  $  \alpha $
 +
has been constructed for testing  $  H _ {0} $
 +
against  $  H _ {1} $.
 +
With a certain amount of license, one says that a consistent test has been constructed. Since  $  \beta _ {n} ( \theta ) $,
 +
$  \theta \in \Theta _ {1} $(
 +
which is the restriction of  $  \beta _ {n} ( \theta ) $,
 +
$  \theta \in \Theta = \Theta _ {0} \cup \Theta _ {1} $,
 +
to  $  \Theta _ {1} $),
 +
is the power of the statistical test constructed from the observations  $  X _ {1} \dots X _ {n} $,
 +
the property of consistency of a sequence of statistical tests can be expressed as follows: The corresponding powers  $  \beta _ {n} ( \theta ) $,
 +
$  \theta \in \Theta _ {1} $,
 +
converge on  $  \Theta _ {1} $
 +
to the function identically equal to 1 on  $  \Theta _ {1} $.
  
then one says that a consistent sequence of statistical tests of level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525031.png" /> has been constructed for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525032.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525033.png" />. With a certain amount of license, one says that a consistent test has been constructed. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525035.png" /> (which is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525037.png" />, to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525038.png" />), is the power of the statistical test constructed from the observations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525039.png" />, the property of consistency of a sequence of statistical tests can be expressed as follows: The corresponding powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525041.png" />, converge on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525042.png" /> to the function identically equal to 1 on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525043.png" />.
+
Example. Let  $  X _ {1} \dots X _ {n} $
 +
be independent identically-distributed random variables whose distribution function belongs to the family  $  H = \{ F ( x) \} $
 +
of all continuous distribution functions on  $  \mathbf R  ^ {1} $,
 +
and let  $  p = ( p _ {1} \dots p _ {k} ) $
 +
be a vector of positive probabilities such that $  p _ {1} + \dots + p _ {k} = 1 $.  
 +
Further, let  $  F _ {0} ( x) $
 +
be any distribution function of $  H $.  
 +
Then  $  F _ {0} ( x) $
 +
and  $  p $
 +
uniquely determine a partition of the real axis into  $  k $
 +
intervals  $  ( x _ {0} ;  x _ {1} ] \dots ( x _ {k - 1 }  ;  x _ {k} ] $,  
 +
where
  
Example. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525044.png" /> be independent identically-distributed random variables whose distribution function belongs to the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525045.png" /> of all continuous distribution functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525046.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525047.png" /> be a vector of positive probabilities such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525048.png" />. Further, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525049.png" /> be any distribution function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525050.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525052.png" /> uniquely determine a partition of the real axis into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525053.png" /> intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525054.png" />, where
+
$$
 +
x _ {0= - \infty ,\ \
 +
x _ {k}  = + \infty ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525055.png" /></td> </tr></table>
+
$$
 +
x _ {i}  = F _ {0} ^ { - 1 } ( p _ {1} +
 +
\dots + p _ {i} )  = \inf  \{ x: F _ {0} ( x) \geq  p _ {1} + \dots + p _ {i} \} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525056.png" /></td> </tr></table>
+
$$
 +
= 1 \dots k - 1.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525057.png" /></td> </tr></table>
+
In other words, the end points of the intervals are quantiles of the distribution function  $  F _ {0} ( x) $.
 +
These intervals determine a partition of  $  H $
 +
into two disjoint sets  $  H _ {0} $
 +
and  $  H _ {1} $
 +
as follows: A distribution function  $  F $
 +
of  $  H $
 +
belongs to  $  H _ {0} $
 +
if and only if
  
In other words, the end points of the intervals are quantiles of the distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525058.png" />. These intervals determine a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525059.png" /> into two disjoint sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525061.png" /> as follows: A distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525062.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525063.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525064.png" /> if and only if
+
$$
 +
F ( x _ {i} ) - F ( x _ {i - 1 }  )  =  p _ {i} ,\ \
 +
i = 1 \dots k,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525065.png" /></td> </tr></table>
+
and otherwise  $  F \in H _ {1} $.
 +
Now let  $  \nu _ {n} = ( \nu _ {n,1} \dots \nu _ {n,k} ) $
 +
be the vector of counts obtained as a result of grouping the first  $  n $
 +
random variables  $  X _ {1} \dots X _ {n} $(
 +
$  n > k $)
 +
into the intervals  $  ( x _ {0} ; x _ {1} ] \dots ( x _ {k - 1 }  ; x _ {k} ] $.
 +
Then to test the hypothesis  $  H _ {0} $
 +
that the distribution function of the  $  X _ {i} $
 +
belongs to the set  $  H _ {0} $
 +
against the alternative  $  H _ {1} $
 +
that it belongs to the set  $  H _ {1} $,
 +
one can make use of the  "chi-squared" test based on the statistic
  
and otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525066.png" />. Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525067.png" /> be the vector of counts obtained as a result of grouping the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525068.png" /> random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525069.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525070.png" />) into the intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525071.png" />. Then to test the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525072.png" /> that the distribution function of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525073.png" /> belongs to the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525074.png" /> against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525075.png" /> that it belongs to the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525076.png" />, one can make use of the  "chi-squared"  test based on the statistic
+
$$
 +
X _ {n}  ^ {2}  = \
 +
\sum _ {i = 1 } ^ { k }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525077.png" /></td> </tr></table>
+
\frac{( \nu _ {n,i} - np _ {i} )  ^ {2} }{np _ {i} }
 +
.
 +
$$
  
According to this, with significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525078.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525079.png" />), the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525080.png" /> must be rejected whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525081.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525082.png" /> is the upper <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525083.png" />-quantile of the  "chi-squared"  distribution with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525084.png" /> degrees of freedom. From the general theory of tests of  "chi-squared"  type it follows that when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525085.png" /> is correct,
+
According to this, with significance level $  \alpha $(
 +
$  0 < \alpha < 0.5 $),  
 +
the hypothesis $  H _ {0} $
 +
must be rejected whenever $  X _ {n}  ^ {2} > \chi _ {k - 1 }  ^ {2} ( \alpha ) $,  
 +
where $  \chi _ {k - 1 }  ^ {2} ( \alpha ) $
 +
is the upper $  \alpha $-
 +
quantile of the  "chi-squared"  distribution with $  k - 1 $
 +
degrees of freedom. From the general theory of tests of  "chi-squared"  type it follows that when $  H _ {1} $
 +
is correct,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525086.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty } \
 +
{\mathsf P} \{
 +
X _ {n}  ^ {2} >
 +
\chi _ {k - 1 }  ^ {2} ( \alpha )  \mid  H _ {1} \}  = 1,
 +
$$
  
which also shows the consistency of the  "chi-squared"  test for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525087.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525088.png" />. But if one takes an arbitrary non-empty subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525089.png" /> and considers the problem of testing against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525090.png" />, then it is clear that the  "chi-squared"  sequence of tests based on the statistics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525091.png" /> is not consistent, since
+
which also shows the consistency of the  "chi-squared"  test for testing $  H _ {0} $
 +
against $  H _ {1} $.  
 +
But if one takes an arbitrary non-empty subset of $  H _ {0} $
 +
and considers the problem of testing against the alternative $  H _ {0}  ^ {**} = H _ {0} \setminus  H _ {0}  ^ {*} $,  
 +
then it is clear that the  "chi-squared"  sequence of tests based on the statistics $  X _ {n}  ^ {2} $
 +
is not consistent, since
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525092.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty } \
 +
{\mathsf P} \{
 +
X _ {n}  ^ {2} > \chi _ {k - 1 }  ^ {2} ( \alpha )  \mid  \
 +
H _ {0} \}  \leq  \alpha  < 1,
 +
$$
  
 
and, in particular,
 
and, in particular,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525093.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty } \
 +
{\mathsf P} \{ X _ {n}  ^ {2} >
 +
\chi _ {k - 1 }  ^ {2} ( \alpha )  \mid  \
 +
H _ {0}  ^ {**} \}  \leq  \alpha  < 1.
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.S. Wilks,  "Mathematical statistics" , Wiley  (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Lehman,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.S. Wilks,  "Mathematical statistics" , Wiley  (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Lehman,  "Testing statistical hypotheses" , Wiley  (1959)</TD></TR></table>

Latest revision as of 17:46, 4 June 2020


consistent statistical test

A statistical test that reliably distinguishes a hypothesis to be tested from an alternative by increasing the number of observations to infinity.

Let $ X _ {1} \dots X _ {n} $ be a sequence of independent identically-distributed random variables taking values in a sample space $ ( \mathfrak X , {\mathcal B} , {\mathsf P} _ \theta ) $, $ \theta \in \Theta $, and suppose one is testing the hypothesis $ H _ {0} $: $ \theta \in \Theta _ {0} \subset \Theta $ against the alternative $ H _ {1} $: $ \theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} $, with an error of the first kind (see Significance level) being given in advance and equal to $ \alpha $( $ 0 < \alpha < 0.5 $). Suppose that the first $ n $ observations $ X _ {1} \dots X _ {n} $ are used to construct a statistical test of level $ \alpha $ for testing $ H _ {0} $ against $ H _ {1} $, and let $ \beta _ {n} ( \theta ) $, $ \theta \in \Theta $, be its power function (cf. Power function of a test), which gives for every $ \theta $ the probability that this test rejects $ H _ {0} $ when the random variable $ X _ {i} $ is subject to the law $ {\mathsf P} _ \theta $. Of course $ \beta _ {n} ( \theta ) \leq \alpha $ for all $ \theta \in \Theta $. By increasing the number of observations without limit it is possible to construct a sequence of statistical tests of a prescribed level $ \alpha $ intended to test $ H _ {0} $ against $ H _ {1} $; the corresponding sequence of power functions $ \{ \beta _ {n} ( \theta ) \} $ satisfies the condition

$$ \beta _ {n} ( \theta ) \leq \alpha \ \ \textrm{ for } \textrm{ any } n \ \textrm{ and } \textrm{ all } \ \theta \in \Theta _ {0} . $$

If under these conditions the sequence of power functions $ \{ \beta _ {n} ( \theta ) \} $ is such that, for any fixed $ \theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} $,

$$ \lim\limits _ {n \rightarrow \infty } \ \beta _ {n} ( \theta ) = 1, $$

then one says that a consistent sequence of statistical tests of level $ \alpha $ has been constructed for testing $ H _ {0} $ against $ H _ {1} $. With a certain amount of license, one says that a consistent test has been constructed. Since $ \beta _ {n} ( \theta ) $, $ \theta \in \Theta _ {1} $( which is the restriction of $ \beta _ {n} ( \theta ) $, $ \theta \in \Theta = \Theta _ {0} \cup \Theta _ {1} $, to $ \Theta _ {1} $), is the power of the statistical test constructed from the observations $ X _ {1} \dots X _ {n} $, the property of consistency of a sequence of statistical tests can be expressed as follows: The corresponding powers $ \beta _ {n} ( \theta ) $, $ \theta \in \Theta _ {1} $, converge on $ \Theta _ {1} $ to the function identically equal to 1 on $ \Theta _ {1} $.

Example. Let $ X _ {1} \dots X _ {n} $ be independent identically-distributed random variables whose distribution function belongs to the family $ H = \{ F ( x) \} $ of all continuous distribution functions on $ \mathbf R ^ {1} $, and let $ p = ( p _ {1} \dots p _ {k} ) $ be a vector of positive probabilities such that $ p _ {1} + \dots + p _ {k} = 1 $. Further, let $ F _ {0} ( x) $ be any distribution function of $ H $. Then $ F _ {0} ( x) $ and $ p $ uniquely determine a partition of the real axis into $ k $ intervals $ ( x _ {0} ; x _ {1} ] \dots ( x _ {k - 1 } ; x _ {k} ] $, where

$$ x _ {0} = - \infty ,\ \ x _ {k} = + \infty , $$

$$ x _ {i} = F _ {0} ^ { - 1 } ( p _ {1} + \dots + p _ {i} ) = \inf \{ x: F _ {0} ( x) \geq p _ {1} + \dots + p _ {i} \} , $$

$$ i = 1 \dots k - 1. $$

In other words, the end points of the intervals are quantiles of the distribution function $ F _ {0} ( x) $. These intervals determine a partition of $ H $ into two disjoint sets $ H _ {0} $ and $ H _ {1} $ as follows: A distribution function $ F $ of $ H $ belongs to $ H _ {0} $ if and only if

$$ F ( x _ {i} ) - F ( x _ {i - 1 } ) = p _ {i} ,\ \ i = 1 \dots k, $$

and otherwise $ F \in H _ {1} $. Now let $ \nu _ {n} = ( \nu _ {n,1} \dots \nu _ {n,k} ) $ be the vector of counts obtained as a result of grouping the first $ n $ random variables $ X _ {1} \dots X _ {n} $( $ n > k $) into the intervals $ ( x _ {0} ; x _ {1} ] \dots ( x _ {k - 1 } ; x _ {k} ] $. Then to test the hypothesis $ H _ {0} $ that the distribution function of the $ X _ {i} $ belongs to the set $ H _ {0} $ against the alternative $ H _ {1} $ that it belongs to the set $ H _ {1} $, one can make use of the "chi-squared" test based on the statistic

$$ X _ {n} ^ {2} = \ \sum _ {i = 1 } ^ { k } \frac{( \nu _ {n,i} - np _ {i} ) ^ {2} }{np _ {i} } . $$

According to this, with significance level $ \alpha $( $ 0 < \alpha < 0.5 $), the hypothesis $ H _ {0} $ must be rejected whenever $ X _ {n} ^ {2} > \chi _ {k - 1 } ^ {2} ( \alpha ) $, where $ \chi _ {k - 1 } ^ {2} ( \alpha ) $ is the upper $ \alpha $- quantile of the "chi-squared" distribution with $ k - 1 $ degrees of freedom. From the general theory of tests of "chi-squared" type it follows that when $ H _ {1} $ is correct,

$$ \lim\limits _ {n \rightarrow \infty } \ {\mathsf P} \{ X _ {n} ^ {2} > \chi _ {k - 1 } ^ {2} ( \alpha ) \mid H _ {1} \} = 1, $$

which also shows the consistency of the "chi-squared" test for testing $ H _ {0} $ against $ H _ {1} $. But if one takes an arbitrary non-empty subset of $ H _ {0} $ and considers the problem of testing against the alternative $ H _ {0} ^ {**} = H _ {0} \setminus H _ {0} ^ {*} $, then it is clear that the "chi-squared" sequence of tests based on the statistics $ X _ {n} ^ {2} $ is not consistent, since

$$ \lim\limits _ {n \rightarrow \infty } \ {\mathsf P} \{ X _ {n} ^ {2} > \chi _ {k - 1 } ^ {2} ( \alpha ) \mid \ H _ {0} \} \leq \alpha < 1, $$

and, in particular,

$$ \lim\limits _ {n \rightarrow \infty } \ {\mathsf P} \{ X _ {n} ^ {2} > \chi _ {k - 1 } ^ {2} ( \alpha ) \mid \ H _ {0} ^ {**} \} \leq \alpha < 1. $$

References

[1] S.S. Wilks, "Mathematical statistics" , Wiley (1962)
[2] E. Lehman, "Testing statistical hypotheses" , Wiley (1959)
How to Cite This Entry:
Consistent test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Consistent_test&oldid=12096
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article