|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | c0252501.png |
| + | $#A+1 = 93 n = 0 |
| + | $#C+1 = 93 : ~/encyclopedia/old_files/data/C025/C.0205250 Consistent test, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''consistent statistical test'' | | ''consistent statistical test'' |
| | | |
| A [[Statistical test|statistical test]] that reliably distinguishes a hypothesis to be tested from an alternative by increasing the number of observations to infinity. | | A [[Statistical test|statistical test]] that reliably distinguishes a hypothesis to be tested from an alternative by increasing the number of observations to infinity. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252501.png" /> be a sequence of independent identically-distributed random variables taking values in a sample space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252502.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252503.png" />, and suppose one is testing the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252504.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252505.png" /> against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252506.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252507.png" />, with an error of the first kind (see [[Significance level|Significance level]]) being given in advance and equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252508.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c0252509.png" />). Suppose that the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525010.png" /> observations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525011.png" /> are used to construct a statistical test of level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525012.png" /> for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525013.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525014.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525016.png" />, be its power function (cf. [[Power function of a test|Power function of a test]]), which gives for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525017.png" /> the probability that this test rejects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525018.png" /> when the random variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525019.png" /> is subject to the law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525020.png" />. Of course <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525021.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525022.png" />. By increasing the number of observations without limit it is possible to construct a sequence of statistical tests of a prescribed level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525023.png" /> intended to test <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525024.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525025.png" />; the corresponding sequence of power functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525026.png" /> satisfies the condition | + | Let $ X _ {1} \dots X _ {n} $ |
| + | be a sequence of independent identically-distributed random variables taking values in a sample space $ ( \mathfrak X , {\mathcal B} , {\mathsf P} _ \theta ) $, |
| + | $ \theta \in \Theta $, |
| + | and suppose one is testing the hypothesis $ H _ {0} $: |
| + | $ \theta \in \Theta _ {0} \subset \Theta $ |
| + | against the alternative $ H _ {1} $: |
| + | $ \theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} $, |
| + | with an error of the first kind (see [[Significance level|Significance level]]) being given in advance and equal to $ \alpha $( |
| + | $ 0 < \alpha < 0.5 $). |
| + | Suppose that the first $ n $ |
| + | observations $ X _ {1} \dots X _ {n} $ |
| + | are used to construct a statistical test of level $ \alpha $ |
| + | for testing $ H _ {0} $ |
| + | against $ H _ {1} $, |
| + | and let $ \beta _ {n} ( \theta ) $, |
| + | $ \theta \in \Theta $, |
| + | be its power function (cf. [[Power function of a test|Power function of a test]]), which gives for every $ \theta $ |
| + | the probability that this test rejects $ H _ {0} $ |
| + | when the random variable $ X _ {i} $ |
| + | is subject to the law $ {\mathsf P} _ \theta $. |
| + | Of course $ \beta _ {n} ( \theta ) \leq \alpha $ |
| + | for all $ \theta \in \Theta $. |
| + | By increasing the number of observations without limit it is possible to construct a sequence of statistical tests of a prescribed level $ \alpha $ |
| + | intended to test $ H _ {0} $ |
| + | against $ H _ {1} $; |
| + | the corresponding sequence of power functions $ \{ \beta _ {n} ( \theta ) \} $ |
| + | satisfies the condition |
| + | |
| + | $$ |
| + | \beta _ {n} ( \theta ) \leq \alpha \ \ |
| + | \textrm{ for } \textrm{ any } n \ |
| + | \textrm{ and } \textrm{ all } \ |
| + | \theta \in \Theta _ {0} . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525027.png" /></td> </tr></table>
| + | If under these conditions the sequence of power functions $ \{ \beta _ {n} ( \theta ) \} $ |
| + | is such that, for any fixed $ \theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} $, |
| | | |
− | If under these conditions the sequence of power functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525028.png" /> is such that, for any fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525029.png" />,
| + | $$ |
| + | \lim\limits _ {n \rightarrow \infty } \ |
| + | \beta _ {n} ( \theta ) = 1, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525030.png" /></td> </tr></table>
| + | then one says that a consistent sequence of statistical tests of level $ \alpha $ |
| + | has been constructed for testing $ H _ {0} $ |
| + | against $ H _ {1} $. |
| + | With a certain amount of license, one says that a consistent test has been constructed. Since $ \beta _ {n} ( \theta ) $, |
| + | $ \theta \in \Theta _ {1} $( |
| + | which is the restriction of $ \beta _ {n} ( \theta ) $, |
| + | $ \theta \in \Theta = \Theta _ {0} \cup \Theta _ {1} $, |
| + | to $ \Theta _ {1} $), |
| + | is the power of the statistical test constructed from the observations $ X _ {1} \dots X _ {n} $, |
| + | the property of consistency of a sequence of statistical tests can be expressed as follows: The corresponding powers $ \beta _ {n} ( \theta ) $, |
| + | $ \theta \in \Theta _ {1} $, |
| + | converge on $ \Theta _ {1} $ |
| + | to the function identically equal to 1 on $ \Theta _ {1} $. |
| | | |
− | then one says that a consistent sequence of statistical tests of level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525031.png" /> has been constructed for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525032.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525033.png" />. With a certain amount of license, one says that a consistent test has been constructed. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525035.png" /> (which is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525037.png" />, to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525038.png" />), is the power of the statistical test constructed from the observations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525039.png" />, the property of consistency of a sequence of statistical tests can be expressed as follows: The corresponding powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525041.png" />, converge on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525042.png" /> to the function identically equal to 1 on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525043.png" />.
| + | Example. Let $ X _ {1} \dots X _ {n} $ |
| + | be independent identically-distributed random variables whose distribution function belongs to the family $ H = \{ F ( x) \} $ |
| + | of all continuous distribution functions on $ \mathbf R ^ {1} $, |
| + | and let $ p = ( p _ {1} \dots p _ {k} ) $ |
| + | be a vector of positive probabilities such that $ p _ {1} + \dots + p _ {k} = 1 $. |
| + | Further, let $ F _ {0} ( x) $ |
| + | be any distribution function of $ H $. |
| + | Then $ F _ {0} ( x) $ |
| + | and $ p $ |
| + | uniquely determine a partition of the real axis into $ k $ |
| + | intervals $ ( x _ {0} ; x _ {1} ] \dots ( x _ {k - 1 } ; x _ {k} ] $, |
| + | where |
| | | |
− | Example. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525044.png" /> be independent identically-distributed random variables whose distribution function belongs to the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525045.png" /> of all continuous distribution functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525046.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525047.png" /> be a vector of positive probabilities such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525048.png" />. Further, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525049.png" /> be any distribution function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525050.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525052.png" /> uniquely determine a partition of the real axis into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525053.png" /> intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525054.png" />, where
| + | $$ |
| + | x _ {0} = - \infty ,\ \ |
| + | x _ {k} = + \infty , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525055.png" /></td> </tr></table>
| + | $$ |
| + | x _ {i} = F _ {0} ^ { - 1 } ( p _ {1} + |
| + | \dots + p _ {i} ) = \inf \{ x: F _ {0} ( x) \geq p _ {1} + \dots + p _ {i} \} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525056.png" /></td> </tr></table>
| + | $$ |
| + | i = 1 \dots k - 1. |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525057.png" /></td> </tr></table>
| + | In other words, the end points of the intervals are quantiles of the distribution function $ F _ {0} ( x) $. |
| + | These intervals determine a partition of $ H $ |
| + | into two disjoint sets $ H _ {0} $ |
| + | and $ H _ {1} $ |
| + | as follows: A distribution function $ F $ |
| + | of $ H $ |
| + | belongs to $ H _ {0} $ |
| + | if and only if |
| | | |
− | In other words, the end points of the intervals are quantiles of the distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525058.png" />. These intervals determine a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525059.png" /> into two disjoint sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525061.png" /> as follows: A distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525062.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525063.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525064.png" /> if and only if
| + | $$ |
| + | F ( x _ {i} ) - F ( x _ {i - 1 } ) = p _ {i} ,\ \ |
| + | i = 1 \dots k, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525065.png" /></td> </tr></table>
| + | and otherwise $ F \in H _ {1} $. |
| + | Now let $ \nu _ {n} = ( \nu _ {n,1} \dots \nu _ {n,k} ) $ |
| + | be the vector of counts obtained as a result of grouping the first $ n $ |
| + | random variables $ X _ {1} \dots X _ {n} $( |
| + | $ n > k $) |
| + | into the intervals $ ( x _ {0} ; x _ {1} ] \dots ( x _ {k - 1 } ; x _ {k} ] $. |
| + | Then to test the hypothesis $ H _ {0} $ |
| + | that the distribution function of the $ X _ {i} $ |
| + | belongs to the set $ H _ {0} $ |
| + | against the alternative $ H _ {1} $ |
| + | that it belongs to the set $ H _ {1} $, |
| + | one can make use of the "chi-squared" test based on the statistic |
| | | |
− | and otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525066.png" />. Now let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525067.png" /> be the vector of counts obtained as a result of grouping the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525068.png" /> random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525069.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525070.png" />) into the intervals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525071.png" />. Then to test the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525072.png" /> that the distribution function of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525073.png" /> belongs to the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525074.png" /> against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525075.png" /> that it belongs to the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525076.png" />, one can make use of the "chi-squared" test based on the statistic
| + | $$ |
| + | X _ {n} ^ {2} = \ |
| + | \sum _ {i = 1 } ^ { k } |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525077.png" /></td> </tr></table>
| + | \frac{( \nu _ {n,i} - np _ {i} ) ^ {2} }{np _ {i} } |
| + | . |
| + | $$ |
| | | |
− | According to this, with significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525078.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525079.png" />), the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525080.png" /> must be rejected whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525081.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525082.png" /> is the upper <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525083.png" />-quantile of the "chi-squared" distribution with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525084.png" /> degrees of freedom. From the general theory of tests of "chi-squared" type it follows that when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525085.png" /> is correct, | + | According to this, with significance level $ \alpha $( |
| + | $ 0 < \alpha < 0.5 $), |
| + | the hypothesis $ H _ {0} $ |
| + | must be rejected whenever $ X _ {n} ^ {2} > \chi _ {k - 1 } ^ {2} ( \alpha ) $, |
| + | where $ \chi _ {k - 1 } ^ {2} ( \alpha ) $ |
| + | is the upper $ \alpha $- |
| + | quantile of the "chi-squared" distribution with $ k - 1 $ |
| + | degrees of freedom. From the general theory of tests of "chi-squared" type it follows that when $ H _ {1} $ |
| + | is correct, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525086.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {n \rightarrow \infty } \ |
| + | {\mathsf P} \{ |
| + | X _ {n} ^ {2} > |
| + | \chi _ {k - 1 } ^ {2} ( \alpha ) \mid H _ {1} \} = 1, |
| + | $$ |
| | | |
− | which also shows the consistency of the "chi-squared" test for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525087.png" /> against <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525088.png" />. But if one takes an arbitrary non-empty subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525089.png" /> and considers the problem of testing against the alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525090.png" />, then it is clear that the "chi-squared" sequence of tests based on the statistics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525091.png" /> is not consistent, since | + | which also shows the consistency of the "chi-squared" test for testing $ H _ {0} $ |
| + | against $ H _ {1} $. |
| + | But if one takes an arbitrary non-empty subset of $ H _ {0} $ |
| + | and considers the problem of testing against the alternative $ H _ {0} ^ {**} = H _ {0} \setminus H _ {0} ^ {*} $, |
| + | then it is clear that the "chi-squared" sequence of tests based on the statistics $ X _ {n} ^ {2} $ |
| + | is not consistent, since |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525092.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {n \rightarrow \infty } \ |
| + | {\mathsf P} \{ |
| + | X _ {n} ^ {2} > \chi _ {k - 1 } ^ {2} ( \alpha ) \mid \ |
| + | H _ {0} \} \leq \alpha < 1, |
| + | $$ |
| | | |
| and, in particular, | | and, in particular, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c025/c025250/c02525093.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {n \rightarrow \infty } \ |
| + | {\mathsf P} \{ X _ {n} ^ {2} > |
| + | \chi _ {k - 1 } ^ {2} ( \alpha ) \mid \ |
| + | H _ {0} ^ {**} \} \leq \alpha < 1. |
| + | $$ |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Wilks, "Mathematical statistics" , Wiley (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Lehman, "Testing statistical hypotheses" , Wiley (1959)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.S. Wilks, "Mathematical statistics" , Wiley (1962)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Lehman, "Testing statistical hypotheses" , Wiley (1959)</TD></TR></table> |
consistent statistical test
A statistical test that reliably distinguishes a hypothesis to be tested from an alternative by increasing the number of observations to infinity.
Let $ X _ {1} \dots X _ {n} $
be a sequence of independent identically-distributed random variables taking values in a sample space $ ( \mathfrak X , {\mathcal B} , {\mathsf P} _ \theta ) $,
$ \theta \in \Theta $,
and suppose one is testing the hypothesis $ H _ {0} $:
$ \theta \in \Theta _ {0} \subset \Theta $
against the alternative $ H _ {1} $:
$ \theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} $,
with an error of the first kind (see Significance level) being given in advance and equal to $ \alpha $(
$ 0 < \alpha < 0.5 $).
Suppose that the first $ n $
observations $ X _ {1} \dots X _ {n} $
are used to construct a statistical test of level $ \alpha $
for testing $ H _ {0} $
against $ H _ {1} $,
and let $ \beta _ {n} ( \theta ) $,
$ \theta \in \Theta $,
be its power function (cf. Power function of a test), which gives for every $ \theta $
the probability that this test rejects $ H _ {0} $
when the random variable $ X _ {i} $
is subject to the law $ {\mathsf P} _ \theta $.
Of course $ \beta _ {n} ( \theta ) \leq \alpha $
for all $ \theta \in \Theta $.
By increasing the number of observations without limit it is possible to construct a sequence of statistical tests of a prescribed level $ \alpha $
intended to test $ H _ {0} $
against $ H _ {1} $;
the corresponding sequence of power functions $ \{ \beta _ {n} ( \theta ) \} $
satisfies the condition
$$
\beta _ {n} ( \theta ) \leq \alpha \ \
\textrm{ for } \textrm{ any } n \
\textrm{ and } \textrm{ all } \
\theta \in \Theta _ {0} .
$$
If under these conditions the sequence of power functions $ \{ \beta _ {n} ( \theta ) \} $
is such that, for any fixed $ \theta \in \Theta _ {1} = \Theta \setminus \Theta _ {0} $,
$$
\lim\limits _ {n \rightarrow \infty } \
\beta _ {n} ( \theta ) = 1,
$$
then one says that a consistent sequence of statistical tests of level $ \alpha $
has been constructed for testing $ H _ {0} $
against $ H _ {1} $.
With a certain amount of license, one says that a consistent test has been constructed. Since $ \beta _ {n} ( \theta ) $,
$ \theta \in \Theta _ {1} $(
which is the restriction of $ \beta _ {n} ( \theta ) $,
$ \theta \in \Theta = \Theta _ {0} \cup \Theta _ {1} $,
to $ \Theta _ {1} $),
is the power of the statistical test constructed from the observations $ X _ {1} \dots X _ {n} $,
the property of consistency of a sequence of statistical tests can be expressed as follows: The corresponding powers $ \beta _ {n} ( \theta ) $,
$ \theta \in \Theta _ {1} $,
converge on $ \Theta _ {1} $
to the function identically equal to 1 on $ \Theta _ {1} $.
Example. Let $ X _ {1} \dots X _ {n} $
be independent identically-distributed random variables whose distribution function belongs to the family $ H = \{ F ( x) \} $
of all continuous distribution functions on $ \mathbf R ^ {1} $,
and let $ p = ( p _ {1} \dots p _ {k} ) $
be a vector of positive probabilities such that $ p _ {1} + \dots + p _ {k} = 1 $.
Further, let $ F _ {0} ( x) $
be any distribution function of $ H $.
Then $ F _ {0} ( x) $
and $ p $
uniquely determine a partition of the real axis into $ k $
intervals $ ( x _ {0} ; x _ {1} ] \dots ( x _ {k - 1 } ; x _ {k} ] $,
where
$$
x _ {0} = - \infty ,\ \
x _ {k} = + \infty ,
$$
$$
x _ {i} = F _ {0} ^ { - 1 } ( p _ {1} +
\dots + p _ {i} ) = \inf \{ x: F _ {0} ( x) \geq p _ {1} + \dots + p _ {i} \} ,
$$
$$
i = 1 \dots k - 1.
$$
In other words, the end points of the intervals are quantiles of the distribution function $ F _ {0} ( x) $.
These intervals determine a partition of $ H $
into two disjoint sets $ H _ {0} $
and $ H _ {1} $
as follows: A distribution function $ F $
of $ H $
belongs to $ H _ {0} $
if and only if
$$
F ( x _ {i} ) - F ( x _ {i - 1 } ) = p _ {i} ,\ \
i = 1 \dots k,
$$
and otherwise $ F \in H _ {1} $.
Now let $ \nu _ {n} = ( \nu _ {n,1} \dots \nu _ {n,k} ) $
be the vector of counts obtained as a result of grouping the first $ n $
random variables $ X _ {1} \dots X _ {n} $(
$ n > k $)
into the intervals $ ( x _ {0} ; x _ {1} ] \dots ( x _ {k - 1 } ; x _ {k} ] $.
Then to test the hypothesis $ H _ {0} $
that the distribution function of the $ X _ {i} $
belongs to the set $ H _ {0} $
against the alternative $ H _ {1} $
that it belongs to the set $ H _ {1} $,
one can make use of the "chi-squared" test based on the statistic
$$
X _ {n} ^ {2} = \
\sum _ {i = 1 } ^ { k }
\frac{( \nu _ {n,i} - np _ {i} ) ^ {2} }{np _ {i} }
.
$$
According to this, with significance level $ \alpha $(
$ 0 < \alpha < 0.5 $),
the hypothesis $ H _ {0} $
must be rejected whenever $ X _ {n} ^ {2} > \chi _ {k - 1 } ^ {2} ( \alpha ) $,
where $ \chi _ {k - 1 } ^ {2} ( \alpha ) $
is the upper $ \alpha $-
quantile of the "chi-squared" distribution with $ k - 1 $
degrees of freedom. From the general theory of tests of "chi-squared" type it follows that when $ H _ {1} $
is correct,
$$
\lim\limits _ {n \rightarrow \infty } \
{\mathsf P} \{
X _ {n} ^ {2} >
\chi _ {k - 1 } ^ {2} ( \alpha ) \mid H _ {1} \} = 1,
$$
which also shows the consistency of the "chi-squared" test for testing $ H _ {0} $
against $ H _ {1} $.
But if one takes an arbitrary non-empty subset of $ H _ {0} $
and considers the problem of testing against the alternative $ H _ {0} ^ {**} = H _ {0} \setminus H _ {0} ^ {*} $,
then it is clear that the "chi-squared" sequence of tests based on the statistics $ X _ {n} ^ {2} $
is not consistent, since
$$
\lim\limits _ {n \rightarrow \infty } \
{\mathsf P} \{
X _ {n} ^ {2} > \chi _ {k - 1 } ^ {2} ( \alpha ) \mid \
H _ {0} \} \leq \alpha < 1,
$$
and, in particular,
$$
\lim\limits _ {n \rightarrow \infty } \
{\mathsf P} \{ X _ {n} ^ {2} >
\chi _ {k - 1 } ^ {2} ( \alpha ) \mid \
H _ {0} ^ {**} \} \leq \alpha < 1.
$$
References
[1] | S.S. Wilks, "Mathematical statistics" , Wiley (1962) |
[2] | E. Lehman, "Testing statistical hypotheses" , Wiley (1959) |