Difference between revisions of "Conformally-invariant metric"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0248401.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/C024/C.0204840 Conformally\AAhinvariant metric | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''on a Riemann surface $ R $'' | |
− | + | A rule that associates with each local parameter $ z $, | |
+ | mapping a parameter neighbourhood $ U \subset R $ | ||
+ | into the closed complex plane $ \overline{\mathbf C}\; $( | ||
+ | $ z : U \rightarrow \overline{\mathbf C}\; $), | ||
+ | a real-valued function | ||
− | + | $$ | |
+ | \rho _ {z} : z ( U) \rightarrow \ | ||
+ | [ 0 , + \infty ] | ||
+ | $$ | ||
− | + | such that for all local parameters $ z _ {1} : U \rightarrow \overline{\mathbf C}\; $ | |
+ | and $ z _ {2} : U _ {2} \rightarrow \overline{\mathbf C}\; $ | ||
+ | for which the intersection $ U _ {1} \cap U _ {2} $ | ||
+ | is not empty, the following relation holds: | ||
− | Every linear differential | + | $$ |
+ | |||
+ | \frac{\rho _ {z _ {2} } ( z _ {2} ( p) ) }{\rho _ {z _ {1} } ( z _ {1} ( p) ) } | ||
+ | = \ | ||
+ | \left | | ||
+ | |||
+ | \frac{d z _ {1} ( p) }{d z _ {2} ( p) } | ||
+ | \ | ||
+ | \right | \ \ | ||
+ | ( \forall p \in U _ {1} \cap U _ {2} ) , | ||
+ | $$ | ||
+ | |||
+ | where $ z ( U) $ | ||
+ | is the image of $ U $ | ||
+ | in $ \overline{\mathbf C}\; $ | ||
+ | under $ z $. | ||
+ | A conformally-invariant metric is often denoted by the symbol $ \rho ( z) | d z | $, | ||
+ | to which the indicated invariance with respect to the choice of the local parameter $ z $ | ||
+ | is attributed. | ||
+ | |||
+ | Every linear differential $ \lambda ( z) d z $( | ||
+ | or [[Quadratic differential|quadratic differential]] $ Q ( z) d z ^ {2} $) | ||
+ | induces a conformally-invariant metric, $ | \lambda ( z) | \cdot | d z | $( | ||
+ | or $ | Q ( z) | ^ {1/2} | d z | $). | ||
+ | The notion of a conformally-invariant metric, being a very general form of defining conformal invariants, enables one to introduce that of the length of curves on $ R $ | ||
+ | as well as the notion of the extremal length and the modulus of families of curves (see [[Extremal metric, method of the|Extremal metric, method of the]], and also [[#References|[1]]]). The definition of a conformally-invariant metric can be carried over to Riemann varieties of arbitrary dimension. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.J. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Schiffer, D.C. Spencer, "Functionals of finite Riemann surfaces" , Princeton Univ. Press (1954)</TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> L.V. Ahlfors, "The complex analytic structure of the space of closed Riemann surfaces" R. Nevanlinna (ed.) et al. (ed.) , ''Analytic functions'' , Princeton Univ. Press (1960) pp. 45–66</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> L.V. Ahlfors, "On quasiconformal mappings" ''J. d'Anal. Math.'' , '''3''' (1954) pp. 1–58</TD></TR><TR><TD valign="top">[3c]</TD> <TD valign="top"> L.V. Ahlfors, "Correction to "On quasiconformal mappings" " ''J. d'Anal. Math.'' , '''3''' (1954) pp. 207–208</TD></TR><TR><TD valign="top">[3d]</TD> <TD valign="top"> L. Bers, "Quasi-conformal mappings and Teichmüller's theorem" R. Nevanlinna (ed.) et al. (ed.) , ''Analytic functions'' , Princeton Univ. Press (1960) pp. 89–119</TD></TR><TR><TD valign="top">[3e]</TD> <TD valign="top"> L. Bers, "Spaces of Riemann surfaces" J.A. Todd (ed.) , ''Proc. Internat. Congress Mathematicians (Edinburgh, 1958)'' , Cambridge Univ. Press (1960) pp. 349–361</TD></TR><TR><TD valign="top">[3f]</TD> <TD valign="top"> L. Bers, "Simultaneous uniformization" ''Bull. Amer. Math. Soc.'' , '''66''' (1960) pp. 94–97</TD></TR><TR><TD valign="top">[3g]</TD> <TD valign="top"> L. Bers, "Holomorphic differentials as functions of moduli" ''Bull. Amer. Math. Soc.'' , '''67''' (1961) pp. 206–210</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.J. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Schiffer, D.C. Spencer, "Functionals of finite Riemann surfaces" , Princeton Univ. Press (1954)</TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> L.V. Ahlfors, "The complex analytic structure of the space of closed Riemann surfaces" R. Nevanlinna (ed.) et al. (ed.) , ''Analytic functions'' , Princeton Univ. Press (1960) pp. 45–66</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> L.V. Ahlfors, "On quasiconformal mappings" ''J. d'Anal. Math.'' , '''3''' (1954) pp. 1–58</TD></TR><TR><TD valign="top">[3c]</TD> <TD valign="top"> L.V. Ahlfors, "Correction to "On quasiconformal mappings" " ''J. d'Anal. Math.'' , '''3''' (1954) pp. 207–208</TD></TR><TR><TD valign="top">[3d]</TD> <TD valign="top"> L. Bers, "Quasi-conformal mappings and Teichmüller's theorem" R. Nevanlinna (ed.) et al. (ed.) , ''Analytic functions'' , Princeton Univ. Press (1960) pp. 89–119</TD></TR><TR><TD valign="top">[3e]</TD> <TD valign="top"> L. Bers, "Spaces of Riemann surfaces" J.A. Todd (ed.) , ''Proc. Internat. Congress Mathematicians (Edinburgh, 1958)'' , Cambridge Univ. Press (1960) pp. 349–361</TD></TR><TR><TD valign="top">[3f]</TD> <TD valign="top"> L. Bers, "Simultaneous uniformization" ''Bull. Amer. Math. Soc.'' , '''66''' (1960) pp. 94–97</TD></TR><TR><TD valign="top">[3g]</TD> <TD valign="top"> L. Bers, "Holomorphic differentials as functions of moduli" ''Bull. Amer. Math. Soc.'' , '''67''' (1961) pp. 206–210</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Lectures on quasiconformal mappings" , v. Nostrand (1966)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Lectures on quasiconformal mappings" , v. Nostrand (1966)</TD></TR></table> |
Latest revision as of 17:46, 4 June 2020
on a Riemann surface $ R $
A rule that associates with each local parameter $ z $, mapping a parameter neighbourhood $ U \subset R $ into the closed complex plane $ \overline{\mathbf C}\; $( $ z : U \rightarrow \overline{\mathbf C}\; $), a real-valued function
$$ \rho _ {z} : z ( U) \rightarrow \ [ 0 , + \infty ] $$
such that for all local parameters $ z _ {1} : U \rightarrow \overline{\mathbf C}\; $ and $ z _ {2} : U _ {2} \rightarrow \overline{\mathbf C}\; $ for which the intersection $ U _ {1} \cap U _ {2} $ is not empty, the following relation holds:
$$ \frac{\rho _ {z _ {2} } ( z _ {2} ( p) ) }{\rho _ {z _ {1} } ( z _ {1} ( p) ) } = \ \left | \frac{d z _ {1} ( p) }{d z _ {2} ( p) } \ \right | \ \ ( \forall p \in U _ {1} \cap U _ {2} ) , $$
where $ z ( U) $ is the image of $ U $ in $ \overline{\mathbf C}\; $ under $ z $. A conformally-invariant metric is often denoted by the symbol $ \rho ( z) | d z | $, to which the indicated invariance with respect to the choice of the local parameter $ z $ is attributed.
Every linear differential $ \lambda ( z) d z $( or quadratic differential $ Q ( z) d z ^ {2} $) induces a conformally-invariant metric, $ | \lambda ( z) | \cdot | d z | $( or $ | Q ( z) | ^ {1/2} | d z | $). The notion of a conformally-invariant metric, being a very general form of defining conformal invariants, enables one to introduce that of the length of curves on $ R $ as well as the notion of the extremal length and the modulus of families of curves (see Extremal metric, method of the, and also [1]). The definition of a conformally-invariant metric can be carried over to Riemann varieties of arbitrary dimension.
References
[1] | J.J. Jenkins, "Univalent functions and conformal mapping" , Springer (1958) |
[2] | M. Schiffer, D.C. Spencer, "Functionals of finite Riemann surfaces" , Princeton Univ. Press (1954) |
[3a] | L.V. Ahlfors, "The complex analytic structure of the space of closed Riemann surfaces" R. Nevanlinna (ed.) et al. (ed.) , Analytic functions , Princeton Univ. Press (1960) pp. 45–66 |
[3b] | L.V. Ahlfors, "On quasiconformal mappings" J. d'Anal. Math. , 3 (1954) pp. 1–58 |
[3c] | L.V. Ahlfors, "Correction to "On quasiconformal mappings" " J. d'Anal. Math. , 3 (1954) pp. 207–208 |
[3d] | L. Bers, "Quasi-conformal mappings and Teichmüller's theorem" R. Nevanlinna (ed.) et al. (ed.) , Analytic functions , Princeton Univ. Press (1960) pp. 89–119 |
[3e] | L. Bers, "Spaces of Riemann surfaces" J.A. Todd (ed.) , Proc. Internat. Congress Mathematicians (Edinburgh, 1958) , Cambridge Univ. Press (1960) pp. 349–361 |
[3f] | L. Bers, "Simultaneous uniformization" Bull. Amer. Math. Soc. , 66 (1960) pp. 94–97 |
[3g] | L. Bers, "Holomorphic differentials as functions of moduli" Bull. Amer. Math. Soc. , 67 (1961) pp. 206–210 |
Comments
References
[a1] | L.V. Ahlfors, "Lectures on quasiconformal mappings" , v. Nostrand (1966) |
Conformally-invariant metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conformally-invariant_metric&oldid=14557