|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | c0245201.png |
| + | $#A+1 = 225 n = 0 |
| + | $#C+1 = 225 : ~/encyclopedia/old_files/data/C024/C.0204520 Conditional stability |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''of a point relative to a family of mappings | | ''of a point relative to a family of mappings |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245201.png" /></td> </tr></table>
| + | $$ \tag{1 } |
| + | \{ f _ {t} \} _ {f \in G ^ {+} } : \ |
| + | E \rightarrow E |
| + | $$ |
| | | |
| '' | | '' |
| | | |
− | Equicontinuity at this point of the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245202.png" /> of restrictions of the mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245203.png" /> to a certain manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245204.png" /> imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245205.png" /> (with the induced metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245206.png" />); here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245207.png" /> is the set of real or integer non-negative numbers: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245208.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c0245209.png" />. | + | Equicontinuity at this point of the family $ \{ f _ {t} \mid _ {V} \} _ {t \in G ^ {+} } $ |
| + | of restrictions of the mappings $ f _ {t} $ |
| + | to a certain manifold $ V $ |
| + | imbedded in $ E $( |
| + | with the induced metric on $ V $); |
| + | here $ G ^ {+} $ |
| + | is the set of real or integer non-negative numbers: $ G = \mathbf R $ |
| + | or $ G = \mathbf Z $. |
| | | |
− | The conditional stability of a point relative to a mapping is defined as the conditional stability relative to the family of non-negative powers of this mapping. The conditional stability of a point relative to a dynamical system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452010.png" /> is the conditional stability of this point relative to the family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452011.png" />. The conditional stability of a solution of an equation | + | The conditional stability of a point relative to a mapping is defined as the conditional stability relative to the family of non-negative powers of this mapping. The conditional stability of a point relative to a dynamical system $ f ^ { t } $ |
| + | is the conditional stability of this point relative to the family of mappings $ \{ f ^ { t } \} _ {t \in G ^ {+} } $. |
| + | The conditional stability of a solution of an equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452012.png" /></td> </tr></table>
| + | $$ |
| + | x ( t + 1 ) = \ |
| + | g _ {t} x ( t) |
| + | $$ |
| | | |
− | given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452013.png" /> is the conditional stability of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452014.png" /> relative to the family of mappings | + | given on $ t _ {0} + \mathbf Z ^ {+} $ |
| + | is the conditional stability of the point $ x _ {0} ( t _ {0} ) $ |
| + | relative to the family of mappings |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452015.png" /></td> </tr></table>
| + | $$ |
| + | \left \{ |
| + | f _ {t} = ^ { {roman } def } \ |
| + | g _ {t _ {0} + t } \dots g _ {t _ {0} + 1 } g _ {t _ {0} } |
| + | \right \} _ {t \in \mathbf Z ^ {+} } . |
| + | $$ |
| | | |
− | The conditional stability of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452016.png" /> of a differential equation | + | The conditional stability of the solution $ x _ {0} ( \cdot ) $ |
| + | of a differential equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{2 } |
| + | \dot{x} = f ( x , t ) |
| + | $$ |
| | | |
− | given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452018.png" /> is the conditional stability of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452019.png" /> relative to the family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452021.png" /> is the [[Cauchy operator|Cauchy operator]] of this equation. The conditional stability of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452022.png" /> of a differential equation of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452023.png" />, | + | given on $ t _ {0} + \mathbf R ^ {+} $ |
| + | is the conditional stability of the point $ x _ {0} ( t _ {0} ) $ |
| + | relative to the family of mappings $ \{ X ( t _ {0} + t , t _ {0} ) \} _ {t \in \mathbf R ^ {+} } $, |
| + | where $ X ( \theta , \tau ) $ |
| + | is the [[Cauchy operator|Cauchy operator]] of this equation. The conditional stability of the solution $ y ( \cdot ) $ |
| + | of a differential equation of order $ m $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452024.png" /></td> </tr></table>
| + | $$ |
| + | y ^ {(} m) = g ( y , \dot{y} \dots y ^ {(} m- 1) , t ) |
| + | $$ |
| | | |
− | given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452025.png" />, is the conditional stability of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452026.png" />, given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452027.png" />, of the corresponding first-order differential equation of the form (2), where | + | given on $ t _ {0} + \mathbf R ^ {+} $, |
| + | is the conditional stability of the solution $ x ( \cdot ) = ( y ( \cdot ) , \dot{y} ( \cdot ) \dots y ^ {(} m- 1) ( \cdot ) ) $, |
| + | given on $ t _ {0} + \mathbf R ^ {+} $, |
| + | of the corresponding first-order differential equation of the form (2), where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452028.png" /></td> </tr></table>
| + | $$ |
| + | x = ( x _ {1} \dots x _ {m} ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452029.png" /></td> </tr></table>
| + | $$ |
| + | f ( x , t ) = ( x _ {2} \dots x _ {m} , g ( x _ {1} \dots x _ {m} , t ) ). |
| + | $$ |
| | | |
| The definitions 1)–5) below are some concrete examples of these and related notions. | | The definitions 1)–5) below are some concrete examples of these and related notions. |
| | | |
− | 1) Given a differential equation (2), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452030.png" /> is a normed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452031.png" />-dimensional vector space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452032.png" />. The solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452033.png" /> of this equation is called conditionally stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452035.png" /> if there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452036.png" />-dimensional disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452037.png" /> imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452038.png" /> (considered as a manifold of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452039.png" />), containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452040.png" /> and having the following property: For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452041.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452042.png" /> such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452043.png" /> satisfying the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452044.png" />, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452045.png" /> of the same equation satisfying the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452046.png" /> is uniquely defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452047.png" />, and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452048.png" /> satisfies the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452049.png" />. If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452050.png" /> with the given property may be chosen so that | + | 1) Given a differential equation (2), where $ E $ |
| + | is a normed $ n $- |
| + | dimensional vector space and $ x \in E $. |
| + | The solution $ x _ {0} ( \cdot ) : t _ {0} + \mathbf R ^ {+} \rightarrow E $ |
| + | of this equation is called conditionally stable with index $ k \in \{ 0 \dots n \} $ |
| + | if there is a $ k $- |
| + | dimensional disc $ D ^ {k} $ |
| + | imbedded in $ E $( |
| + | considered as a manifold of class $ C ^ {m} $), |
| + | containing the point $ x _ {0} ( t _ {0} ) $ |
| + | and having the following property: For each $ \epsilon > 0 $ |
| + | there is a $ \delta > 0 $ |
| + | such that for every $ x \in D ^ {k} $ |
| + | satisfying the inequality $ | x - x _ {0} ( t _ {0} ) | < \delta $, |
| + | the solution $ x ( \cdot ) $ |
| + | of the same equation satisfying the initial condition $ x ( t _ {0} ) = x $ |
| + | is uniquely defined on $ t _ {0} + \mathbf R ^ {+} $, |
| + | and for each $ t \in t _ {0} + \mathbf R ^ {+} $ |
| + | satisfies the inequality $ | x ( t) - x _ {0} ( t) | < \epsilon $. |
| + | If the disc $ D ^ {k} $ |
| + | with the given property may be chosen so that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452051.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ |
| + | {t \rightarrow + \infty } \ |
| + | | x ( t) - x _ {0} ( t) | = 0 |
| + | $$ |
| | | |
| (respectively, | | (respectively, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452052.png" /></td> </tr></table>
| + | $$ |
| + | {\lim\limits _ {t \rightarrow + \infty } } bar \ |
| + | |
| + | \frac{1}{t} |
| + | \mathop{\rm ln} | x ( t) - x _ {0} ( t) | < 0 ; |
| + | $$ |
| | | |
− | here, and elsewhere is understood that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452053.png" />) for every solution of the same equations starting in this disc (i.e. such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452054.png" />), then the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452055.png" /> is called asymptotically (respectively, exponentially) conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452056.png" />). | + | here, and elsewhere is understood that $ \mathop{\rm ln} 0 = - \infty $) |
| + | for every solution of the same equations starting in this disc (i.e. such that $ x ( t _ {0} ) \in D ^ {k} $), |
| + | then the solution $ x _ {0} ( t) $ |
| + | is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $). |
| | | |
− | The solution of the equation (2) (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452057.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452058.png" />) is called conditionally (asymptotically, exponentially conditionally) stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452059.png" />, if it becomes such as the result of equipping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452060.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452061.png" />) with a suitable norm. This property of the solution does not depend on the choice of norm. | + | The solution of the equation (2) ( $ x \in \mathbf R ^ {n} $ |
| + | or $ x \in \mathbf C ^ {n} $) |
| + | is called conditionally (asymptotically, exponentially conditionally) stable with index $ k $, |
| + | if it becomes such as the result of equipping $ \mathbf R ^ {n} $( |
| + | or $ \mathbf C ^ {n} $) |
| + | with a suitable norm. This property of the solution does not depend on the choice of norm. |
| | | |
− | 2) Given an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452062.png" />-dimensional Riemannian manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452063.png" /> (the distance function on which is written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452064.png" />), one calls a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452065.png" /> conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452066.png" />) relative to a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452067.png" /> if there is a (usually smooth) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452068.png" />-dimensional disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452069.png" /> imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452070.png" />, containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452071.png" /> and having the following property: For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452072.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452073.png" /> such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452074.png" /> satisfying the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452075.png" />, the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452076.png" /> holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452077.png" />. If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452078.png" /> with the above property can be chosen so that | + | 2) Given an $ n $- |
| + | dimensional Riemannian manifold $ V ^ {n} $( |
| + | the distance function on which is written as $ d ( \cdot , \cdot ) $), |
| + | one calls a point $ x _ {0} \in V ^ {n} $ |
| + | conditionally stable (with index $ k \in \{ 0 \dots n \} $) |
| + | relative to a mapping $ f : V ^ {n} \rightarrow V ^ {n} $ |
| + | if there is a (usually smooth) $ k $- |
| + | dimensional disc $ D ^ {k} $ |
| + | imbedded in $ V ^ {n} $, |
| + | containing the point $ x _ {0} $ |
| + | and having the following property: For each $ \epsilon > 0 $ |
| + | there exists a $ \delta > 0 $ |
| + | such that for every $ x \in D ^ {k} $ |
| + | satisfying the inequality $ d ( x , x _ {0} ) < \delta $, |
| + | the inequality $ d ( f ^ { t } x , f ^ { t } x _ {0} ) < \epsilon $ |
| + | holds for all $ t \in \mathbf N $. |
| + | If the disc $ D ^ {k} $ |
| + | with the above property can be chosen so that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452079.png" /></td> </tr></table>
| + | $$ |
| + | d ( f ^ { t } x , f ^ { t } x _ {0} ) \rightarrow 0 \ \ |
| + | \textrm{ as } t \rightarrow + \infty |
| + | $$ |
| | | |
| (respectively, | | (respectively, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452080.png" /></td> </tr></table>
| + | $$ |
| + | \left . {\lim\limits _ {t \rightarrow + \infty } } bar \ |
| | | |
− | for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452081.png" />, then the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452082.png" /> is called asymptotically (respectively, exponentially) conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452083.png" />) relative to the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452084.png" />.
| + | \frac{1}{t} |
| + | \mathop{\rm ln} \ |
| + | d ( f ^ { t } x , f ^ { t } x _ {0} ) < 0 \right ) |
| + | $$ |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452085.png" /> be a compact differentiable manifold. A point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452086.png" /> is called conditionally stable (asymptotically, exponentially conditionally stable) with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452087.png" /> relative to a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452088.png" /> if it becomes such as a result of equipping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452089.png" /> with a suitable Riemannian metric. This property of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452090.png" /> does not depend on the choice of the Riemannian metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452091.png" />.
| + | for each $ x \in D ^ {k} $, |
| + | then the point $ x _ {0} $ |
| + | is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $) |
| + | relative to the mapping $ f $. |
| | | |
− | 3) Consider the differential equation (2) on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452092.png" />-dimensional Riemannian (or Finsler, cf. [[Finsler geometry|Finsler geometry]]) manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452093.png" />, the distance function on which is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452094.png" />. The solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452095.png" /> of this equation is called conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452096.png" />) if there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452097.png" />-dimensional disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452098.png" /> imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c02452099.png" /> (considered as a manifold of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520100.png" />, where usually <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520101.png" />), containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520102.png" /> and having the following property: For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520103.png" /> there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520104.png" /> such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520105.png" /> satisfying the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520106.png" />, the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520107.png" /> of the same equation satisfying the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520108.png" /> is unique, defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520109.png" />, and for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520110.png" /> satisfies the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520111.png" />. If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520112.png" /> with the above property may be taken so that
| + | Let $ V ^ {n} $ |
| + | be a compact differentiable manifold. A point $ x _ {0} \in V ^ {n} $ |
| + | is called conditionally stable (asymptotically, exponentially conditionally stable) with index $ k $ |
| + | relative to a mapping $ f : V ^ {n} \rightarrow V ^ {n} $ |
| + | if it becomes such as a result of equipping $ V ^ {n} $ |
| + | with a suitable Riemannian metric. This property of $ x _ {0} $ |
| + | does not depend on the choice of the Riemannian metric on $ V ^ {n} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520113.png" /></td> </tr></table>
| + | 3) Consider the differential equation (2) on an $ n $- |
| + | dimensional Riemannian (or Finsler, cf. [[Finsler geometry|Finsler geometry]]) manifold $ V ^ {n} $, |
| + | the distance function on which is denoted by $ d ( \cdot , \cdot ) $. |
| + | The solution $ x _ {0} ( \cdot ) : t _ {0} + \mathbf R ^ {+} \rightarrow V ^ {n} $ |
| + | of this equation is called conditionally stable (with index $ k $) |
| + | if there is a $ k $- |
| + | dimensional disc $ D ^ {k} $ |
| + | imbedded in $ V ^ {n} $( |
| + | considered as a manifold of class $ C ^ {m} $, |
| + | where usually $ m \geq 1 $), |
| + | containing the point $ x _ {0} ( t _ {0} ) $ |
| + | and having the following property: For each $ \epsilon > 0 $ |
| + | there exists a $ \delta > 0 $ |
| + | such that for every $ x \in D ^ {k} $ |
| + | satisfying the inequality $ d ( x , x _ {0} ( t _ {0} ) ) < \delta $, |
| + | the solution $ x ( \cdot ) $ |
| + | of the same equation satisfying the initial condition $ x ( t _ {0} ) = x $ |
| + | is unique, defined on $ t _ {0} + \mathbf R ^ {+} $, |
| + | and for each $ t \in t _ {0} + \mathbf R ^ {+} $ |
| + | satisfies the inequality $ d ( x ( t) , x _ {0} ( t) ) < \epsilon $. |
| + | If the disc $ D ^ {k} $ |
| + | with the above property may be taken so that |
| + | |
| + | $$ |
| + | d ( x ( t) , x _ {0} ( t) ) \rightarrow 0 \ \ |
| + | \textrm{ as } t \rightarrow + \infty |
| + | $$ |
| | | |
| (respectively, | | (respectively, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520114.png" /></td> </tr></table>
| + | $$ |
| + | \left . {\lim\limits _ {t \rightarrow + \infty } } bar \ |
| | | |
− | for every solution of the same equation starting in this disc (i.e. such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520115.png" />), then the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520116.png" /> is called asymptotically (respectively, exponentially) conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520117.png" />).
| + | \frac{1}{t} |
| + | \mathop{\rm ln} d ( x ( t) , x _ {0} ( t) ) < 0 \right ) |
| + | $$ |
| | | |
− | 4) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520118.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520119.png" />-dimensional manifold of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520120.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520121.png" /> be an open subset of it. Suppose that a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520122.png" /> is fixed under a family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520123.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520124.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520125.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520126.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520127.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520128.png" />). The fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520129.png" /> is called conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520130.png" />) relative to the family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520131.png" /> if there is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520132.png" />-dimensional disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520133.png" /> smoothly imbedded (by an imbedding of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520134.png" />) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520135.png" /> such that for every neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520136.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520137.png" /> there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520138.png" /> of the same point such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520139.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520140.png" />. If the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520141.png" /> with this property may be taken so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520142.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520143.png" />, then the fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520144.png" /> is called asymptotically conditionally stable (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520145.png" />) relative to the family of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520146.png" />.
| + | for every solution of the same equation starting in this disc (i.e. such that $ x ( t _ {0} ) \in D ^ {k} $), |
| + | then the solution $ x _ {0} ( \cdot ) $ |
| + | is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $). |
| | | |
− | 5) The conditional (conditional asymptotic, conditional exponential) stability (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520147.png" />) of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520148.png" /> of an equation of arbitrary order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520149.png" />, is defined as the conditional (asymptotic, conditional exponential) stability (with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520150.png" />) of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520151.png" /> of the corresponding first-order equation (2), where
| + | 4) Let $ V ^ {n} $ |
| + | be an $ n $- |
| + | dimensional manifold of class $ C ^ {m} $ |
| + | and let $ U $ |
| + | be an open subset of it. Suppose that a point $ x _ {0} \in U $ |
| + | is fixed under a family of mappings $ f _ {t} : U \rightarrow V ^ {n} $ |
| + | of class $ C ^ {m} $( |
| + | $ t \in G ^ {+} $, |
| + | where $ G $ |
| + | is $ \mathbf R $ |
| + | or $ \mathbf Z $). |
| + | The fixed point $ x _ {0} $ |
| + | is called conditionally stable (with index $ k $) |
| + | relative to the family of mappings $ \{ f _ {t} \} _ {t \in G ^ {+} } $ |
| + | if there is $ k $- |
| + | dimensional disc $ D ^ {k} $ |
| + | smoothly imbedded (by an imbedding of class $ C ^ {m} $) |
| + | in $ V ^ {n} $ |
| + | such that for every neighbourhood $ V \subset V ^ {n} $ |
| + | of $ x _ {0} $ |
| + | there is a neighbourhood $ W $ |
| + | of the same point such that $ f _ {t} ( D ^ {k} \cap W ) \subset V $ |
| + | for every $ t \in G ^ {+} $. |
| + | If the disc $ D ^ {k} $ |
| + | with this property may be taken so that $ \lim\limits _ {t \rightarrow + \infty } f _ {t} x = x _ {0} $ |
| + | for every $ x \in D ^ {k} $, |
| + | then the fixed point $ x _ {0} $ |
| + | is called asymptotically conditionally stable (with index $ k $) |
| + | relative to the family of mappings $ \{ f _ {t} \} _ {t \in G ^ {+} } $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520152.png" /></td> </tr></table>
| + | 5) The conditional (conditional asymptotic, conditional exponential) stability (with index $ k $) |
| + | of the solution $ y _ {0} ( \cdot ) $ |
| + | of an equation of arbitrary order $ y ^ {(} m) = g ( y , \dot{y} \dots y ^ {(} m- 1) , t ) $, |
| + | is defined as the conditional (asymptotic, conditional exponential) stability (with index $ k $) |
| + | of the solution $ x _ {0} ( \cdot ) = ( y _ {0} ( \cdot ) , \dot{y} _ {0} ( \cdot ) \dots y _ {0} ^ {(} m- 1) ( \cdot )) $ |
| + | of the corresponding first-order equation (2), where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520153.png" /></td> </tr></table>
| + | $$ |
| + | x = ( x _ {1} \dots x _ {m} ) , |
| + | $$ |
| | | |
− | Sometimes (cf. e.g. [[#References|[3]]]) in defining conditional stability one requires the index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520154.png" /> to be non-zero: conditional stability with index zero always holds. Conditional stability (conditional asymptotic, conditional exponential stability) with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520155.png" /> (the dimension of the phase space) is the same as [[Lyapunov stability|Lyapunov stability]] (respectively, asymptotic, exponential stability).
| + | $$ |
| + | f ( x , t ) = ( x _ {2} \dots x _ {m} , g ( x _ {1} \dots x _ {m} , t ) ) . |
| + | $$ |
| | | |
− | The equilibrium positions under conditional stability have been investigated. Suppose that in a neighbourhood of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520156.png" /> an autonomous differential equation
| + | Sometimes (cf. e.g. [[#References|[3]]]) in defining conditional stability one requires the index $ k $ |
| + | to be non-zero: conditional stability with index zero always holds. Conditional stability (conditional asymptotic, conditional exponential stability) with index $ n $( |
| + | the dimension of the phase space) is the same as [[Lyapunov stability|Lyapunov stability]] (respectively, asymptotic, exponential stability). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520157.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | The equilibrium positions under conditional stability have been investigated. Suppose that in a neighbourhood of a point $ x _ {0} \in \mathbf R ^ {n} $ |
| + | an autonomous differential equation |
| | | |
− | is given, the right-hand side of which is continuously differentiable and vanishes at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520158.png" />. If in the open left half-plane in the complex plane there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520159.png" /> eigen values of the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520160.png" />, then this fixed point of equation (3) is conditionally exponentially stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520161.png" /> (Lyapunov's theorem on conditional stability). For example, the upper equilibrium position <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520162.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520163.png" /> of the equation of oscillation of a pendulum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520164.png" /> is exponentially conditionally stable with index 1, because one of the roots of the characteristic equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520165.png" /> of the variational equation (cf. [[Variational equations|Variational equations]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520166.png" /> is negative.
| + | $$ \tag{3 } |
| + | \dot{x} = f ( x) |
| + | $$ |
| | | |
− | A fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520167.png" /> of a differentiable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520168.png" /> is exponentially conditionally stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520169.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520170.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520171.png" /> eigen values of the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520172.png" /> lie in the open unit disc. A periodic point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520173.png" /> of a differential mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520174.png" />, having period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520175.png" />, is conditionally (asymptotically conditionally, exponentially conditionally) stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520176.png" /> relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520177.png" /> if and only if it has this property relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520178.png" />.
| + | is given, the right-hand side of which is continuously differentiable and vanishes at the point $ x _ {0} $. |
| + | If in the open left half-plane in the complex plane there are $ k $ |
| + | eigen values of the derivative $ d f _ {x _ {0} } $, |
| + | then this fixed point of equation (3) is conditionally exponentially stable with index $ k $( |
| + | Lyapunov's theorem on conditional stability). For example, the upper equilibrium position $ y = \pi $, |
| + | $ \dot{y} = 0 $ |
| + | of the equation of oscillation of a pendulum $ \dot{y} dot = \omega ^ {2} \sin y = 0 $ |
| + | is exponentially conditionally stable with index 1, because one of the roots of the characteristic equation $ \lambda ^ {2} - \omega ^ {2} = 0 $ |
| + | of the variational equation (cf. [[Variational equations|Variational equations]]) $ \dot{y} dot - \omega ^ {2} y = 0 $ |
| + | is negative. |
| | | |
− | A periodic solution of an autonomous differential equation (3) with smooth right-hand side <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520179.png" /> having period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520180.png" /> is (asymptotically, exponentially) conditionally stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520181.png" /> if and only if its value at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520182.png" /> is (respectively, asymptotically, exponentially) conditionally stable with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520183.png" /> relative to the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520184.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520185.png" /> is the Cauchy operator of (3). | + | A fixed point $ x _ {0} $ |
| + | of a differentiable mapping $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ |
| + | is exponentially conditionally stable with index $ k $ |
| + | relative to $ f $ |
| + | if $ k $ |
| + | eigen values of the derivative $ d f _ {x _ {0} } $ |
| + | lie in the open unit disc. A periodic point $ x _ {0} $ |
| + | of a differential mapping $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $, |
| + | having period $ m $, |
| + | is conditionally (asymptotically conditionally, exponentially conditionally) stable with index $ k $ |
| + | relative to $ f $ |
| + | if and only if it has this property relative to $ f ^ { m } $. |
| | | |
− | The example of O. Perron (cf. [[Lyapunov stability|Lyapunov stability]]) shows that the negativity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520186.png" /> Lyapunov exponents of the variational equation along the solution of (3) does not imply the conditional stability with index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520187.png" /> of this solution. However, one has the following theorem, which shows that the situation described be Perron's example is not generic.
| + | A periodic solution of an autonomous differential equation (3) with smooth right-hand side $ f ( x) $ |
| + | having period $ T $ |
| + | is (asymptotically, exponentially) conditionally stable with index $ k $ |
| + | if and only if its value at the point $ t = 0 $ |
| + | is (respectively, asymptotically, exponentially) conditionally stable with index $ k $ |
| + | relative to the mapping $ X ( T , 0 ) $, |
| + | where $ X ( \theta , \tau ) $ |
| + | is the Cauchy operator of (3). |
| | | |
− | 1) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520188.png" /> be the set of all diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520189.png" /> of a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520190.png" /> having uniformly continuous derivatives satisfying the inequality
| + | The example of O. Perron (cf. [[Lyapunov stability|Lyapunov stability]]) shows that the negativity of $ k $ |
| + | Lyapunov exponents of the variational equation along the solution of (3) does not imply the conditional stability with index $ k $ |
| + | of this solution. However, one has the following theorem, which shows that the situation described be Perron's example is not generic. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520191.png" /></td> </tr></table>
| + | 1) Let $ S $ |
| + | be the set of all diffeomorphisms $ f $ |
| + | of a Euclidean space $ E ^ {n} $ |
| + | having uniformly continuous derivatives satisfying the inequality |
| | | |
− | For every diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520192.png" /> denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520193.png" /> the set of diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520194.png" /> satisfying the inequality
| + | $$ |
| + | \sup _ |
| + | {x \in E ^ {n} } \ |
| + | \max |
| + | \{ \| d f _ {x} \| , \| ( d f _ {x} ) ^ {-} 1 \| \} |
| + | < + \infty . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520195.png" /></td> </tr></table>
| + | For every diffeomorphism $ j \in S $ |
| + | denote by $ S _ {j} $ |
| + | the set of diffeomorphisms $ f \in S $ |
| + | satisfying the inequality |
| | | |
− | on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520196.png" /> the distance function
| + | $$ |
| + | \sup _ |
| + | {x \in E ^ {n} } \ |
| + | | f x - j x | |
| + | < + \infty ; |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520197.png" /></td> </tr></table>
| + | on the set $ S _ {j} $ |
| + | the distance function |
| + | |
| + | $$ |
| + | d ( f , g ) = \ |
| + | \sup _ |
| + | {x \in E ^ {n} } \ |
| + | ( | f x - g x | + |
| + | \| d f _ {x} - d g _ {x} \| ) |
| + | $$ |
| | | |
| is given. | | is given. |
| | | |
− | Fir each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520198.png" /> one has in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520199.png" /> an everywhere-dense set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520200.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520201.png" /> with the following property: For every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520202.png" /> the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520203.png" /> is exponentially conditionally stable relative to the diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520204.png" /> with index | + | Fir each $ j \in S $ |
| + | one has in $ S _ {j} \times E ^ {n} $ |
| + | an everywhere-dense set $ D _ {j} $ |
| + | of type $ G _ \delta $ |
| + | with the following property: For every $ ( f , x ) \in D _ {j} $ |
| + | the point $ x $ |
| + | is exponentially conditionally stable relative to the diffeomorphism $ f $ |
| + | with index |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520205.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm dim} \ |
| + | \left \{ { |
| + | \mathfrak r \in T _ {x} E ^ {n} } : { {\lim\limits _ {m \rightarrow + \infty } } bar \ |
| + | |
| + | \frac{1}{m} |
| + | \mathop{\rm ln} | d f ^ { m } \mathfrak r | < 0 |
| + | } \right \} |
| + | , |
| + | $$ |
| | | |
| i.e. with index equal to the number of negative Lyapunov characteristic exponents of the variational equation (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]). | | i.e. with index equal to the number of negative Lyapunov characteristic exponents of the variational equation (cf. [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]]). |
| | | |
− | 2) For a dynamical system given on a closed differentiable manifold, analogous theorems can be formulated in a way that is more simple and invariant from the point of view of differential topology. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520206.png" /> be a closed differentiable manifold. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520207.png" /> of all diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520208.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520209.png" /> mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520210.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520211.png" /> is equipped with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520212.png" />-topology. In the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520213.png" /> there is an everywhere-dense set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520214.png" /> of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520215.png" /> with the following property: For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520216.png" /> the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520217.png" /> is exponentially conditionally stable relative to the diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520218.png" /> with index | + | 2) For a dynamical system given on a closed differentiable manifold, analogous theorems can be formulated in a way that is more simple and invariant from the point of view of differential topology. Let $ V ^ {n} $ |
| + | be a closed differentiable manifold. The set $ S $ |
| + | of all diffeomorphisms $ f $ |
| + | of class $ C ^ {1} $ |
| + | mapping $ V ^ {n} $ |
| + | onto $ V ^ {n} $ |
| + | is equipped with the $ C ^ {1} $- |
| + | topology. In the space $ S \times V ^ {n} $ |
| + | there is an everywhere-dense set $ D $ |
| + | of type $ G _ \delta $ |
| + | with the following property: For each $ ( f , x ) \in D $ |
| + | the point $ x $ |
| + | is exponentially conditionally stable relative to the diffeomorphism $ f $ |
| + | with index |
| + | |
| + | $$ \tag{4 } |
| + | k ( x) = \mathop{\rm dim} \ |
| + | \left \{ { |
| + | \mathfrak r \in T _ {x} V ^ {n} } : { {\lim\limits _ {m \rightarrow + \infty } } bar \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520219.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table> | + | \frac{1}{m} |
| + | \mathop{\rm ln} | d f ^ { m } \mathfrak r | < 0 |
| + | } \right \} |
| + | . |
| + | $$ |
| | | |
− | 3) For every diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520220.png" /> of a closed differentiable manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520221.png" /> and for every probability distribution on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520222.png" /> that is invariant relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520223.png" /> (and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520224.png" />-algebra of which contains all Borel sets), the set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520225.png" /> that are exponentially conditionally stable with index (4) relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024520/c024520226.png" /> has probability 1. | + | 3) For every diffeomorphism $ f : V ^ {n} \rightarrow V ^ {n} $ |
| + | of a closed differentiable manifold $ V ^ {n} $ |
| + | and for every probability distribution on $ V ^ {n} $ |
| + | that is invariant relative to $ f $( |
| + | and the $ \sigma $- |
| + | algebra of which contains all Borel sets), the set of points $ x \in V ^ {n} $ |
| + | that are exponentially conditionally stable with index (4) relative to $ f $ |
| + | has probability 1. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Lyapunov, "Collected works" , '''2''' , Moscow-Leningrad (1956) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.F. Bylov, R.E. Vinograd, D.M. Grobman, V.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.P. Demidovich, "Lectures on the mathematical theory of stability" , Moscow (1967) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.A. Izobov, "Linear systems of ordinary differential equations" ''J. Soviet Math.'' , '''5''' : 1 pp. 46–96 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12''' (1974) pp. 71–146</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Ya.B. Pesin, "Characteristic Lyapunov exponents and smooth ergodic theory" ''Russian Math. Surveys'' , '''32''' : 4 (1977) pp. 55–114 ''Uspekhi Mat. Nauk'' , '''32''' : 4 (1977) pp. 55–112</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.M. Lyapunov, "Collected works" , '''2''' , Moscow-Leningrad (1956) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B.F. Bylov, R.E. Vinograd, D.M. Grobman, V.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.P. Demidovich, "Lectures on the mathematical theory of stability" , Moscow (1967) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.A. Izobov, "Linear systems of ordinary differential equations" ''J. Soviet Math.'' , '''5''' : 1 pp. 46–96 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12''' (1974) pp. 71–146</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Ya.B. Pesin, "Characteristic Lyapunov exponents and smooth ergodic theory" ''Russian Math. Surveys'' , '''32''' : 4 (1977) pp. 55–114 ''Uspekhi Mat. Nauk'' , '''32''' : 4 (1977) pp. 55–112</TD></TR></table> |
of a point relative to a family of mappings
$$ \tag{1 }
\{ f _ {t} \} _ {f \in G ^ {+} } : \
E \rightarrow E
$$
Equicontinuity at this point of the family $ \{ f _ {t} \mid _ {V} \} _ {t \in G ^ {+} } $
of restrictions of the mappings $ f _ {t} $
to a certain manifold $ V $
imbedded in $ E $(
with the induced metric on $ V $);
here $ G ^ {+} $
is the set of real or integer non-negative numbers: $ G = \mathbf R $
or $ G = \mathbf Z $.
The conditional stability of a point relative to a mapping is defined as the conditional stability relative to the family of non-negative powers of this mapping. The conditional stability of a point relative to a dynamical system $ f ^ { t } $
is the conditional stability of this point relative to the family of mappings $ \{ f ^ { t } \} _ {t \in G ^ {+} } $.
The conditional stability of a solution of an equation
$$
x ( t + 1 ) = \
g _ {t} x ( t)
$$
given on $ t _ {0} + \mathbf Z ^ {+} $
is the conditional stability of the point $ x _ {0} ( t _ {0} ) $
relative to the family of mappings
$$
\left \{
f _ {t} = ^ { {roman } def } \
g _ {t _ {0} + t } \dots g _ {t _ {0} + 1 } g _ {t _ {0} }
\right \} _ {t \in \mathbf Z ^ {+} } .
$$
The conditional stability of the solution $ x _ {0} ( \cdot ) $
of a differential equation
$$ \tag{2 }
\dot{x} = f ( x , t )
$$
given on $ t _ {0} + \mathbf R ^ {+} $
is the conditional stability of the point $ x _ {0} ( t _ {0} ) $
relative to the family of mappings $ \{ X ( t _ {0} + t , t _ {0} ) \} _ {t \in \mathbf R ^ {+} } $,
where $ X ( \theta , \tau ) $
is the Cauchy operator of this equation. The conditional stability of the solution $ y ( \cdot ) $
of a differential equation of order $ m $,
$$
y ^ {(} m) = g ( y , \dot{y} \dots y ^ {(} m- 1) , t )
$$
given on $ t _ {0} + \mathbf R ^ {+} $,
is the conditional stability of the solution $ x ( \cdot ) = ( y ( \cdot ) , \dot{y} ( \cdot ) \dots y ^ {(} m- 1) ( \cdot ) ) $,
given on $ t _ {0} + \mathbf R ^ {+} $,
of the corresponding first-order differential equation of the form (2), where
$$
x = ( x _ {1} \dots x _ {m} ) ,
$$
$$
f ( x , t ) = ( x _ {2} \dots x _ {m} , g ( x _ {1} \dots x _ {m} , t ) ).
$$
The definitions 1)–5) below are some concrete examples of these and related notions.
1) Given a differential equation (2), where $ E $
is a normed $ n $-
dimensional vector space and $ x \in E $.
The solution $ x _ {0} ( \cdot ) : t _ {0} + \mathbf R ^ {+} \rightarrow E $
of this equation is called conditionally stable with index $ k \in \{ 0 \dots n \} $
if there is a $ k $-
dimensional disc $ D ^ {k} $
imbedded in $ E $(
considered as a manifold of class $ C ^ {m} $),
containing the point $ x _ {0} ( t _ {0} ) $
and having the following property: For each $ \epsilon > 0 $
there is a $ \delta > 0 $
such that for every $ x \in D ^ {k} $
satisfying the inequality $ | x - x _ {0} ( t _ {0} ) | < \delta $,
the solution $ x ( \cdot ) $
of the same equation satisfying the initial condition $ x ( t _ {0} ) = x $
is uniquely defined on $ t _ {0} + \mathbf R ^ {+} $,
and for each $ t \in t _ {0} + \mathbf R ^ {+} $
satisfies the inequality $ | x ( t) - x _ {0} ( t) | < \epsilon $.
If the disc $ D ^ {k} $
with the given property may be chosen so that
$$
\lim\limits _
{t \rightarrow + \infty } \
| x ( t) - x _ {0} ( t) | = 0
$$
(respectively,
$$
{\lim\limits _ {t \rightarrow + \infty } } bar \
\frac{1}{t}
\mathop{\rm ln} | x ( t) - x _ {0} ( t) | < 0 ;
$$
here, and elsewhere is understood that $ \mathop{\rm ln} 0 = - \infty $)
for every solution of the same equations starting in this disc (i.e. such that $ x ( t _ {0} ) \in D ^ {k} $),
then the solution $ x _ {0} ( t) $
is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $).
The solution of the equation (2) ( $ x \in \mathbf R ^ {n} $
or $ x \in \mathbf C ^ {n} $)
is called conditionally (asymptotically, exponentially conditionally) stable with index $ k $,
if it becomes such as the result of equipping $ \mathbf R ^ {n} $(
or $ \mathbf C ^ {n} $)
with a suitable norm. This property of the solution does not depend on the choice of norm.
2) Given an $ n $-
dimensional Riemannian manifold $ V ^ {n} $(
the distance function on which is written as $ d ( \cdot , \cdot ) $),
one calls a point $ x _ {0} \in V ^ {n} $
conditionally stable (with index $ k \in \{ 0 \dots n \} $)
relative to a mapping $ f : V ^ {n} \rightarrow V ^ {n} $
if there is a (usually smooth) $ k $-
dimensional disc $ D ^ {k} $
imbedded in $ V ^ {n} $,
containing the point $ x _ {0} $
and having the following property: For each $ \epsilon > 0 $
there exists a $ \delta > 0 $
such that for every $ x \in D ^ {k} $
satisfying the inequality $ d ( x , x _ {0} ) < \delta $,
the inequality $ d ( f ^ { t } x , f ^ { t } x _ {0} ) < \epsilon $
holds for all $ t \in \mathbf N $.
If the disc $ D ^ {k} $
with the above property can be chosen so that
$$
d ( f ^ { t } x , f ^ { t } x _ {0} ) \rightarrow 0 \ \
\textrm{ as } t \rightarrow + \infty
$$
(respectively,
$$
\left . {\lim\limits _ {t \rightarrow + \infty } } bar \
\frac{1}{t}
\mathop{\rm ln} \
d ( f ^ { t } x , f ^ { t } x _ {0} ) < 0 \right )
$$
for each $ x \in D ^ {k} $,
then the point $ x _ {0} $
is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $)
relative to the mapping $ f $.
Let $ V ^ {n} $
be a compact differentiable manifold. A point $ x _ {0} \in V ^ {n} $
is called conditionally stable (asymptotically, exponentially conditionally stable) with index $ k $
relative to a mapping $ f : V ^ {n} \rightarrow V ^ {n} $
if it becomes such as a result of equipping $ V ^ {n} $
with a suitable Riemannian metric. This property of $ x _ {0} $
does not depend on the choice of the Riemannian metric on $ V ^ {n} $.
3) Consider the differential equation (2) on an $ n $-
dimensional Riemannian (or Finsler, cf. Finsler geometry) manifold $ V ^ {n} $,
the distance function on which is denoted by $ d ( \cdot , \cdot ) $.
The solution $ x _ {0} ( \cdot ) : t _ {0} + \mathbf R ^ {+} \rightarrow V ^ {n} $
of this equation is called conditionally stable (with index $ k $)
if there is a $ k $-
dimensional disc $ D ^ {k} $
imbedded in $ V ^ {n} $(
considered as a manifold of class $ C ^ {m} $,
where usually $ m \geq 1 $),
containing the point $ x _ {0} ( t _ {0} ) $
and having the following property: For each $ \epsilon > 0 $
there exists a $ \delta > 0 $
such that for every $ x \in D ^ {k} $
satisfying the inequality $ d ( x , x _ {0} ( t _ {0} ) ) < \delta $,
the solution $ x ( \cdot ) $
of the same equation satisfying the initial condition $ x ( t _ {0} ) = x $
is unique, defined on $ t _ {0} + \mathbf R ^ {+} $,
and for each $ t \in t _ {0} + \mathbf R ^ {+} $
satisfies the inequality $ d ( x ( t) , x _ {0} ( t) ) < \epsilon $.
If the disc $ D ^ {k} $
with the above property may be taken so that
$$
d ( x ( t) , x _ {0} ( t) ) \rightarrow 0 \ \
\textrm{ as } t \rightarrow + \infty
$$
(respectively,
$$
\left . {\lim\limits _ {t \rightarrow + \infty } } bar \
\frac{1}{t}
\mathop{\rm ln} d ( x ( t) , x _ {0} ( t) ) < 0 \right )
$$
for every solution of the same equation starting in this disc (i.e. such that $ x ( t _ {0} ) \in D ^ {k} $),
then the solution $ x _ {0} ( \cdot ) $
is called asymptotically (respectively, exponentially) conditionally stable (with index $ k $).
4) Let $ V ^ {n} $
be an $ n $-
dimensional manifold of class $ C ^ {m} $
and let $ U $
be an open subset of it. Suppose that a point $ x _ {0} \in U $
is fixed under a family of mappings $ f _ {t} : U \rightarrow V ^ {n} $
of class $ C ^ {m} $(
$ t \in G ^ {+} $,
where $ G $
is $ \mathbf R $
or $ \mathbf Z $).
The fixed point $ x _ {0} $
is called conditionally stable (with index $ k $)
relative to the family of mappings $ \{ f _ {t} \} _ {t \in G ^ {+} } $
if there is $ k $-
dimensional disc $ D ^ {k} $
smoothly imbedded (by an imbedding of class $ C ^ {m} $)
in $ V ^ {n} $
such that for every neighbourhood $ V \subset V ^ {n} $
of $ x _ {0} $
there is a neighbourhood $ W $
of the same point such that $ f _ {t} ( D ^ {k} \cap W ) \subset V $
for every $ t \in G ^ {+} $.
If the disc $ D ^ {k} $
with this property may be taken so that $ \lim\limits _ {t \rightarrow + \infty } f _ {t} x = x _ {0} $
for every $ x \in D ^ {k} $,
then the fixed point $ x _ {0} $
is called asymptotically conditionally stable (with index $ k $)
relative to the family of mappings $ \{ f _ {t} \} _ {t \in G ^ {+} } $.
5) The conditional (conditional asymptotic, conditional exponential) stability (with index $ k $)
of the solution $ y _ {0} ( \cdot ) $
of an equation of arbitrary order $ y ^ {(} m) = g ( y , \dot{y} \dots y ^ {(} m- 1) , t ) $,
is defined as the conditional (asymptotic, conditional exponential) stability (with index $ k $)
of the solution $ x _ {0} ( \cdot ) = ( y _ {0} ( \cdot ) , \dot{y} _ {0} ( \cdot ) \dots y _ {0} ^ {(} m- 1) ( \cdot )) $
of the corresponding first-order equation (2), where
$$
x = ( x _ {1} \dots x _ {m} ) ,
$$
$$
f ( x , t ) = ( x _ {2} \dots x _ {m} , g ( x _ {1} \dots x _ {m} , t ) ) .
$$
Sometimes (cf. e.g. [3]) in defining conditional stability one requires the index $ k $
to be non-zero: conditional stability with index zero always holds. Conditional stability (conditional asymptotic, conditional exponential stability) with index $ n $(
the dimension of the phase space) is the same as Lyapunov stability (respectively, asymptotic, exponential stability).
The equilibrium positions under conditional stability have been investigated. Suppose that in a neighbourhood of a point $ x _ {0} \in \mathbf R ^ {n} $
an autonomous differential equation
$$ \tag{3 }
\dot{x} = f ( x)
$$
is given, the right-hand side of which is continuously differentiable and vanishes at the point $ x _ {0} $.
If in the open left half-plane in the complex plane there are $ k $
eigen values of the derivative $ d f _ {x _ {0} } $,
then this fixed point of equation (3) is conditionally exponentially stable with index $ k $(
Lyapunov's theorem on conditional stability). For example, the upper equilibrium position $ y = \pi $,
$ \dot{y} = 0 $
of the equation of oscillation of a pendulum $ \dot{y} dot = \omega ^ {2} \sin y = 0 $
is exponentially conditionally stable with index 1, because one of the roots of the characteristic equation $ \lambda ^ {2} - \omega ^ {2} = 0 $
of the variational equation (cf. Variational equations) $ \dot{y} dot - \omega ^ {2} y = 0 $
is negative.
A fixed point $ x _ {0} $
of a differentiable mapping $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $
is exponentially conditionally stable with index $ k $
relative to $ f $
if $ k $
eigen values of the derivative $ d f _ {x _ {0} } $
lie in the open unit disc. A periodic point $ x _ {0} $
of a differential mapping $ f : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $,
having period $ m $,
is conditionally (asymptotically conditionally, exponentially conditionally) stable with index $ k $
relative to $ f $
if and only if it has this property relative to $ f ^ { m } $.
A periodic solution of an autonomous differential equation (3) with smooth right-hand side $ f ( x) $
having period $ T $
is (asymptotically, exponentially) conditionally stable with index $ k $
if and only if its value at the point $ t = 0 $
is (respectively, asymptotically, exponentially) conditionally stable with index $ k $
relative to the mapping $ X ( T , 0 ) $,
where $ X ( \theta , \tau ) $
is the Cauchy operator of (3).
The example of O. Perron (cf. Lyapunov stability) shows that the negativity of $ k $
Lyapunov exponents of the variational equation along the solution of (3) does not imply the conditional stability with index $ k $
of this solution. However, one has the following theorem, which shows that the situation described be Perron's example is not generic.
1) Let $ S $
be the set of all diffeomorphisms $ f $
of a Euclidean space $ E ^ {n} $
having uniformly continuous derivatives satisfying the inequality
$$
\sup _
{x \in E ^ {n} } \
\max
\{ \| d f _ {x} \| , \| ( d f _ {x} ) ^ {-} 1 \| \}
< + \infty .
$$
For every diffeomorphism $ j \in S $
denote by $ S _ {j} $
the set of diffeomorphisms $ f \in S $
satisfying the inequality
$$
\sup _
{x \in E ^ {n} } \
| f x - j x |
< + \infty ;
$$
on the set $ S _ {j} $
the distance function
$$
d ( f , g ) = \
\sup _
{x \in E ^ {n} } \
( | f x - g x | +
\| d f _ {x} - d g _ {x} \| )
$$
is given.
Fir each $ j \in S $
one has in $ S _ {j} \times E ^ {n} $
an everywhere-dense set $ D _ {j} $
of type $ G _ \delta $
with the following property: For every $ ( f , x ) \in D _ {j} $
the point $ x $
is exponentially conditionally stable relative to the diffeomorphism $ f $
with index
$$
\mathop{\rm dim} \
\left \{ {
\mathfrak r \in T _ {x} E ^ {n} } : { {\lim\limits _ {m \rightarrow + \infty } } bar \
\frac{1}{m}
\mathop{\rm ln} | d f ^ { m } \mathfrak r | < 0
} \right \}
,
$$
i.e. with index equal to the number of negative Lyapunov characteristic exponents of the variational equation (cf. Lyapunov characteristic exponent).
2) For a dynamical system given on a closed differentiable manifold, analogous theorems can be formulated in a way that is more simple and invariant from the point of view of differential topology. Let $ V ^ {n} $
be a closed differentiable manifold. The set $ S $
of all diffeomorphisms $ f $
of class $ C ^ {1} $
mapping $ V ^ {n} $
onto $ V ^ {n} $
is equipped with the $ C ^ {1} $-
topology. In the space $ S \times V ^ {n} $
there is an everywhere-dense set $ D $
of type $ G _ \delta $
with the following property: For each $ ( f , x ) \in D $
the point $ x $
is exponentially conditionally stable relative to the diffeomorphism $ f $
with index
$$ \tag{4 }
k ( x) = \mathop{\rm dim} \
\left \{ {
\mathfrak r \in T _ {x} V ^ {n} } : { {\lim\limits _ {m \rightarrow + \infty } } bar \
\frac{1}{m}
\mathop{\rm ln} | d f ^ { m } \mathfrak r | < 0
} \right \}
.
$$
3) For every diffeomorphism $ f : V ^ {n} \rightarrow V ^ {n} $
of a closed differentiable manifold $ V ^ {n} $
and for every probability distribution on $ V ^ {n} $
that is invariant relative to $ f $(
and the $ \sigma $-
algebra of which contains all Borel sets), the set of points $ x \in V ^ {n} $
that are exponentially conditionally stable with index (4) relative to $ f $
has probability 1.
References
[1] | A.M. Lyapunov, "Collected works" , 2 , Moscow-Leningrad (1956) (In Russian) |
[2] | B.F. Bylov, R.E. Vinograd, D.M. Grobman, V.V. Nemytskii, "The theory of Lyapunov exponents and its applications to problems of stability" , Moscow (1966) (In Russian) |
[3] | B.P. Demidovich, "Lectures on the mathematical theory of stability" , Moscow (1967) (In Russian) |
[4] | N.A. Izobov, "Linear systems of ordinary differential equations" J. Soviet Math. , 5 : 1 pp. 46–96 Itogi Nauk. i Tekhn. Mat. Anal. , 12 (1974) pp. 71–146 |
[5] | Ya.B. Pesin, "Characteristic Lyapunov exponents and smooth ergodic theory" Russian Math. Surveys , 32 : 4 (1977) pp. 55–114 Uspekhi Mat. Nauk , 32 : 4 (1977) pp. 55–112 |