Namespaces
Variants
Actions

Difference between revisions of "Commutant lifting theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103201.png" /> be a [[Contraction(2)|contraction]] on a [[Hilbert space|Hilbert space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103202.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103203.png" />. Recall that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103204.png" /> is an isometric dilation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103205.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103206.png" /> is an isometry (cf. [[Isometric operator|Isometric operator]]) on a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103207.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103208.png" /> is an invariant subspace for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c1103209.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032010.png" />. The Sz.-Nagy–Shäffer construction shows that all contractions admit an isometric dilation [[#References|[a1]]], [[#References|[a5]]]. This sets the stage for the following result, known as the Sz.-Nagy–Foias commutant lifting theorem [[#References|[a1]]], [[#References|[a4]]], [[#References|[a5]]].
+
<!--
 +
c1103201.png
 +
$#A+1 = 78 n = 1
 +
$#C+1 = 78 : ~/encyclopedia/old_files/data/C110/C.1100320 Commutant lifting theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032011.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032012.png" /> be an isometric dilation for a contraction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032013.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032014.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032015.png" /> be an operator from the Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032016.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032018.png" /> an isometry on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032019.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032020.png" />. Then there exists an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032021.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032022.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032023.png" /> satisfying the following three conditions: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032026.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032027.png" /> is the orthogonal projection onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032028.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The commutant lifting theorem was inspired by seminal work of D. Sarason [[#References|[a3]]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032030.png" /> interpolation. It can be used to solve many classical and modern <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032031.png" /> interpolation problems, including the Carathéodory, Nevanlinna–Pick, Hermite–Féjer, Nudelman, Nehari, and Löwner interpolation problems in both their classical and tangential form (see [[#References|[a1]]] and also [[Carathéodory interpolation|Carathéodory interpolation]]; [[Nevanlinna–Pick interpolation|Nevanlinna–Pick interpolation]]). The commutant lifting theorem can also be used to solve problems in [[H^infinity-control-theory|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032032.png" /> control theory]] and inverse scattering [[#References|[a1]]], [[#References|[a2]]].
+
Let  $  T _ {1} $
 +
be a [[Contraction(2)|contraction]] on a [[Hilbert space|Hilbert space]]  $  {\mathcal H} _ {1} $,
 +
that is,  $  \| {T _ {1} } \| \leq  1 $.
 +
Recall that  $  U $
 +
is an isometric dilation of  $  T _ {1} $
 +
if  $  U $
 +
is an isometry (cf. [[Isometric operator|Isometric operator]]) on a Hilbert space  $  {\mathcal K} \supseteq {\mathcal H} _ {1} $
 +
and  $  {\mathcal H} _ {1} $
 +
is an invariant subspace for  $  U  ^ {*} $
 +
satisfying  $  U  ^ {*} \mid  {\mathcal H} _ {1} = T _ {1}  ^ {*} $.
 +
The Sz.-Nagy–Shäffer construction shows that all contractions admit an isometric dilation [[#References|[a1]]], [[#References|[a5]]]. This sets the stage for the following result, known as the Sz.-Nagy–Foias commutant lifting theorem [[#References|[a1]]], [[#References|[a4]]], [[#References|[a5]]].
 +
 
 +
Let  $  U $
 +
on  $  {\mathcal K} $
 +
be an isometric dilation for a contraction  $  T _ {1} $
 +
on  $  {\mathcal H} _ {1} $.
 +
Let  $  A $
 +
be an operator from the Hilbert space  $  {\mathcal H} $
 +
into  $  {\mathcal H} _ {1} $
 +
and  $  T $
 +
an isometry on  $  {\mathcal H} $
 +
satisfying  $  T _ {1} A = AT $.
 +
Then there exists an operator  $  B $
 +
from  $  {\mathcal H} $
 +
into  $  {\mathcal K} $
 +
satisfying the following three conditions:  $  UB = BT $,
 +
$  \| B \| = \| A \| $
 +
and  $  PB = A $,
 +
where  $  P $
 +
is the orthogonal projection onto  $  {\mathcal H} _ {1} $.
 +
 
 +
The commutant lifting theorem was inspired by seminal work of D. Sarason [[#References|[a3]]] on $  H  ^  \infty  $
 +
interpolation. It can be used to solve many classical and modern $  H  ^  \infty  $
 +
interpolation problems, including the Carathéodory, Nevanlinna–Pick, Hermite–Féjer, Nudelman, Nehari, and Löwner interpolation problems in both their classical and tangential form (see [[#References|[a1]]] and also [[Carathéodory interpolation|Carathéodory interpolation]]; [[Nevanlinna–Pick interpolation|Nevanlinna–Pick interpolation]]). The commutant lifting theorem can also be used to solve problems in [[H^infinity-control-theory| $  H  ^  \infty  $
 +
control theory]] and inverse scattering [[#References|[a1]]], [[#References|[a2]]].
  
 
There is a one-to-one correspondence between the set of all solutions in the commutant lifting theorem and a certain choice sequence of contractions. This choice sequence is a generalization of the Schur numbers used to solve the Carathéodory interpolation problem or the reflection coefficients appearing in inverse scattering problems for layered media in geophysics. There is also a one-to-one correspondence between the sets of all solutions for the commutant lifting theorem and a certain contractive analytic function in the open unit disc. This characterization of all solutions has several different network interpretations [[#References|[a1]]].
 
There is a one-to-one correspondence between the set of all solutions in the commutant lifting theorem and a certain choice sequence of contractions. This choice sequence is a generalization of the Schur numbers used to solve the Carathéodory interpolation problem or the reflection coefficients appearing in inverse scattering problems for layered media in geophysics. There is also a one-to-one correspondence between the sets of all solutions for the commutant lifting theorem and a certain contractive analytic function in the open unit disc. This characterization of all solutions has several different network interpretations [[#References|[a1]]].
Line 9: Line 51:
 
As an illustration of the commutant lifting theorem, consider the Nehari interpolation problem
 
As an illustration of the commutant lifting theorem, consider the Nehari interpolation problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032033.png" /></td> </tr></table>
+
$$
 +
d _  \infty  = \inf  \left \{ {\left \| {f - h } \right \| _  \infty  } : {h \in H  ^  \infty  } \right \} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032034.png" /> is a given function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032035.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032036.png" /> is the Banach space of all Lebesgue-measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032037.png" /> on the unit circle whose norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032038.png" /> is finite, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032039.png" /> is the subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032040.png" /> consisting of all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032041.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032042.png" /> whose Fourier coefficients at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032043.png" /> are zero for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032044.png" />. Likewise, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032045.png" /> is the Hilbert space of all Lebesgue-measurable, square-integrable functions on the unit circle, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032046.png" /> is the subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032047.png" /> consisting of all functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032048.png" /> whose Fourier coefficients at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032049.png" /> vanish for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032050.png" />. Now, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032051.png" /> be the Hankel operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032052.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032053.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032054.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032055.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032056.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032057.png" /> be the isometry on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032059.png" /> the unitary operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032060.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032062.png" />, respectively. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032063.png" /> be the contraction on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032064.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032065.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032066.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032067.png" />. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032068.png" />, it follows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032069.png" /> is an isometric lifting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032070.png" />. By applying the commutant lifting theorem, there exists an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032071.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032072.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032073.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032075.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032076.png" />. Therefore, the error <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032077.png" />, and there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032078.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032079.png" />.
+
where $  f $
 +
is a given function in $  L  ^  \infty  $.  
 +
Here, $  L  ^  \infty  $
 +
is the Banach space of all Lebesgue-measurable functions $  g $
 +
on the unit circle whose norm $  \| g \| _  \infty  = { \mathop{\rm ess}  \sup } \{ {| {g ( e ^ {it } ) } | } : {0 \leq  t < 2 \pi } \} $
 +
is finite, and $  H  ^  \infty  $
 +
is the subspace of $  L  ^  \infty  $
 +
consisting of all functions $  g $
 +
in $  L  ^  \infty  $
 +
whose Fourier coefficients at $  e ^ {int } $
 +
are zero for all $  n < 0 $.  
 +
Likewise, $  L  ^ {2} $
 +
is the Hilbert space of all Lebesgue-measurable, square-integrable functions on the unit circle, and $  H  ^ {2} $
 +
is the subspace of $  L  ^ {2} $
 +
consisting of all functions in $  L  ^ {2} $
 +
whose Fourier coefficients at $  e ^ {int } $
 +
vanish for all $  n < 0 $.  
 +
Now, let $  A $
 +
be the Hankel operator from $  {\mathcal H} = H  ^ {2} $
 +
into $  {\mathcal H} _ {1} = L  ^ {2} \omn H  ^ {2} $
 +
defined by $  Ax = Pfx $
 +
for $  x $
 +
in $  H  ^ {2} $.  
 +
Let $  T $
 +
be the isometry on $  H  ^ {2} $
 +
and $  U $
 +
the unitary operator on $  {\mathcal K} = L  ^ {2} $
 +
defined by $  Tx = e ^ {it } x $
 +
and $  Uy = e ^ {it } y $,  
 +
respectively. Let $  T _ {1} $
 +
be the contraction on $  {\mathcal H} _ {1} $
 +
defined by $  T _ {1} h _ {1} = PUh _ {1} $
 +
for $  h _ {1} $
 +
in $  {\mathcal H} _ {1} $.  
 +
Since $  T _ {1}  ^ {*} = U  ^ {*} \mid  {\mathcal H} _ {1} $,  
 +
it follows that $  U $
 +
is an isometric lifting of $  T _ {1} $.  
 +
By applying the commutant lifting theorem, there exists an operator $  B $
 +
from $  H  ^ {2} $
 +
into $  L  ^ {2} $
 +
satisfying $  UB = BT $,  
 +
$  \| B \| = \| A \| $
 +
and $  PB = A $.  
 +
Therefore, the error $  d _  \infty  = \| A \| $,  
 +
and there exists an $  h \in H  ^  \infty  $
 +
such that $  d _  \infty  = \| {f - h } \| _  \infty  $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Foias,  A.E. Frazho,  "The commutant lifting approach to interpolation problems" , ''Operator Theory: Advances and Applications'' , '''44''' , Birkhäuser  (1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Foias,  H. Özbay,  A. Tannenbaum,  "Robust control of infinite-dimensional systems" , Springer  (1996)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D. Sarason,  "Generalized interpolation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032080.png" />"  ''Trans. Amer. Math. Soc.'' , '''127'''  (1967)  pp. 179–203</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B. Sz.-Nagy,  C. Foias,  "Dilatation des commutants d'opérateurs"  ''C.R. Acad. Sci. Paris'' , '''A266'''  (1968)  pp. 493–495</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Sz.-Nagy,  C. Foias,  "Harmonic analysis of operators on Hilbert space" , North-Holland  (1970)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. Foias,  A.E. Frazho,  "The commutant lifting approach to interpolation problems" , ''Operator Theory: Advances and Applications'' , '''44''' , Birkhäuser  (1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Foias,  H. Özbay,  A. Tannenbaum,  "Robust control of infinite-dimensional systems" , Springer  (1996)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D. Sarason,  "Generalized interpolation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110320/c11032080.png" />"  ''Trans. Amer. Math. Soc.'' , '''127'''  (1967)  pp. 179–203</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  B. Sz.-Nagy,  C. Foias,  "Dilatation des commutants d'opérateurs"  ''C.R. Acad. Sci. Paris'' , '''A266'''  (1968)  pp. 493–495</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  B. Sz.-Nagy,  C. Foias,  "Harmonic analysis of operators on Hilbert space" , North-Holland  (1970)</TD></TR></table>

Revision as of 17:45, 4 June 2020


Let $ T _ {1} $ be a contraction on a Hilbert space $ {\mathcal H} _ {1} $, that is, $ \| {T _ {1} } \| \leq 1 $. Recall that $ U $ is an isometric dilation of $ T _ {1} $ if $ U $ is an isometry (cf. Isometric operator) on a Hilbert space $ {\mathcal K} \supseteq {\mathcal H} _ {1} $ and $ {\mathcal H} _ {1} $ is an invariant subspace for $ U ^ {*} $ satisfying $ U ^ {*} \mid {\mathcal H} _ {1} = T _ {1} ^ {*} $. The Sz.-Nagy–Shäffer construction shows that all contractions admit an isometric dilation [a1], [a5]. This sets the stage for the following result, known as the Sz.-Nagy–Foias commutant lifting theorem [a1], [a4], [a5].

Let $ U $ on $ {\mathcal K} $ be an isometric dilation for a contraction $ T _ {1} $ on $ {\mathcal H} _ {1} $. Let $ A $ be an operator from the Hilbert space $ {\mathcal H} $ into $ {\mathcal H} _ {1} $ and $ T $ an isometry on $ {\mathcal H} $ satisfying $ T _ {1} A = AT $. Then there exists an operator $ B $ from $ {\mathcal H} $ into $ {\mathcal K} $ satisfying the following three conditions: $ UB = BT $, $ \| B \| = \| A \| $ and $ PB = A $, where $ P $ is the orthogonal projection onto $ {\mathcal H} _ {1} $.

The commutant lifting theorem was inspired by seminal work of D. Sarason [a3] on $ H ^ \infty $ interpolation. It can be used to solve many classical and modern $ H ^ \infty $ interpolation problems, including the Carathéodory, Nevanlinna–Pick, Hermite–Féjer, Nudelman, Nehari, and Löwner interpolation problems in both their classical and tangential form (see [a1] and also Carathéodory interpolation; Nevanlinna–Pick interpolation). The commutant lifting theorem can also be used to solve problems in $ H ^ \infty $ control theory and inverse scattering [a1], [a2].

There is a one-to-one correspondence between the set of all solutions in the commutant lifting theorem and a certain choice sequence of contractions. This choice sequence is a generalization of the Schur numbers used to solve the Carathéodory interpolation problem or the reflection coefficients appearing in inverse scattering problems for layered media in geophysics. There is also a one-to-one correspondence between the sets of all solutions for the commutant lifting theorem and a certain contractive analytic function in the open unit disc. This characterization of all solutions has several different network interpretations [a1].

As an illustration of the commutant lifting theorem, consider the Nehari interpolation problem

$$ d _ \infty = \inf \left \{ {\left \| {f - h } \right \| _ \infty } : {h \in H ^ \infty } \right \} , $$

where $ f $ is a given function in $ L ^ \infty $. Here, $ L ^ \infty $ is the Banach space of all Lebesgue-measurable functions $ g $ on the unit circle whose norm $ \| g \| _ \infty = { \mathop{\rm ess} \sup } \{ {| {g ( e ^ {it } ) } | } : {0 \leq t < 2 \pi } \} $ is finite, and $ H ^ \infty $ is the subspace of $ L ^ \infty $ consisting of all functions $ g $ in $ L ^ \infty $ whose Fourier coefficients at $ e ^ {int } $ are zero for all $ n < 0 $. Likewise, $ L ^ {2} $ is the Hilbert space of all Lebesgue-measurable, square-integrable functions on the unit circle, and $ H ^ {2} $ is the subspace of $ L ^ {2} $ consisting of all functions in $ L ^ {2} $ whose Fourier coefficients at $ e ^ {int } $ vanish for all $ n < 0 $. Now, let $ A $ be the Hankel operator from $ {\mathcal H} = H ^ {2} $ into $ {\mathcal H} _ {1} = L ^ {2} \omn H ^ {2} $ defined by $ Ax = Pfx $ for $ x $ in $ H ^ {2} $. Let $ T $ be the isometry on $ H ^ {2} $ and $ U $ the unitary operator on $ {\mathcal K} = L ^ {2} $ defined by $ Tx = e ^ {it } x $ and $ Uy = e ^ {it } y $, respectively. Let $ T _ {1} $ be the contraction on $ {\mathcal H} _ {1} $ defined by $ T _ {1} h _ {1} = PUh _ {1} $ for $ h _ {1} $ in $ {\mathcal H} _ {1} $. Since $ T _ {1} ^ {*} = U ^ {*} \mid {\mathcal H} _ {1} $, it follows that $ U $ is an isometric lifting of $ T _ {1} $. By applying the commutant lifting theorem, there exists an operator $ B $ from $ H ^ {2} $ into $ L ^ {2} $ satisfying $ UB = BT $, $ \| B \| = \| A \| $ and $ PB = A $. Therefore, the error $ d _ \infty = \| A \| $, and there exists an $ h \in H ^ \infty $ such that $ d _ \infty = \| {f - h } \| _ \infty $.

References

[a1] C. Foias, A.E. Frazho, "The commutant lifting approach to interpolation problems" , Operator Theory: Advances and Applications , 44 , Birkhäuser (1990)
[a2] C. Foias, H. Özbay, A. Tannenbaum, "Robust control of infinite-dimensional systems" , Springer (1996)
[a3] D. Sarason, "Generalized interpolation in " Trans. Amer. Math. Soc. , 127 (1967) pp. 179–203
[a4] B. Sz.-Nagy, C. Foias, "Dilatation des commutants d'opérateurs" C.R. Acad. Sci. Paris , A266 (1968) pp. 493–495
[a5] B. Sz.-Nagy, C. Foias, "Harmonic analysis of operators on Hilbert space" , North-Holland (1970)
How to Cite This Entry:
Commutant lifting theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Commutant_lifting_theorem&oldid=16540
This article was adapted from an original article by A.E. Frazho (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article