Difference between revisions of "Combinatorial geometry(2)"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | c0232701.png | ||
+ | $#A+1 = 43 n = 0 | ||
+ | $#C+1 = 43 : ~/encyclopedia/old_files/data/C023/C.0203270 Combinatorial geometry | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A finite set $ S $ | |
+ | together with a closure relation | ||
− | + | $$ | |
+ | A \rightarrow \overline{A}\; , | ||
+ | $$ | ||
− | A | + | defined for all subsets $ A $ |
+ | of $ S $( | ||
+ | that is, $ A \subseteq \overline{A}\; $, | ||
+ | $ A \subseteq B $ | ||
+ | implies $ \overline{A}\; \subseteq \overline{B}\; $ | ||
+ | and $ \overline{ {\overline{A}\; }}\; = \overline{A}\; $, | ||
+ | but not necessarily $ \overline{ {A \cup B }}\; = \overline{A}\; \cup \overline{B}\; $), | ||
+ | and satisfying the conditions: 1) for the empty set $ \overline \emptyset \; = \emptyset $; | ||
+ | 2) $ \overline{p}\; = p $ | ||
+ | for each element $ p \in S $; | ||
+ | and 3) if $ p, q \in S $ | ||
+ | and $ A \subseteq S $ | ||
+ | and if $ q \in \overline{ {A \cup p }}\; $ | ||
+ | but $ q \notin \overline{A}\; $, | ||
+ | then $ p \in \overline{ {A \cup q }}\; $( | ||
+ | the "exchange" property). The closed sets, or subspaces, $ ( \overline{A}\; = A) $ | ||
+ | form a [[geometric lattice]] (cf. [[Semi-Dedekind lattice|Semi-Dedekind lattice]]). A subset $ I \subseteq S $ | ||
+ | is independent if $ p \notin \overline{ {I \setminus p }}\; $ | ||
+ | for all $ p \in I $; | ||
+ | all maximal independent sets, or bases, have the same cardinality. The direct sum of combinatorial geometries and the restriction of a combinatorial geometry to a subset $ A $ | ||
+ | are defined in the usual way. The cardinality of the bases of the restriction of a combinatorial geometry to $ A $ | ||
+ | is called the rank $ r ( A) $ | ||
+ | of $ A $. | ||
+ | The rank function satisfies the condition | ||
− | + | $$ | |
+ | r ( A \cup B) + | ||
+ | r ( A \cap B) \leq \ | ||
+ | r ( A) + r ( B). | ||
+ | $$ | ||
− | < | + | A subset $ A \subseteq S $ |
+ | for which $ r ( A) < | A | $ | ||
+ | is said to be dependent; the minimal dependent sets of a combinatorial geometry are called circuits. By dropping conditions 1) and 2) in the definition of a combinatorial geometry one obtains the definition of a pre-geometry or [[Matroid|matroid]]. Infinite combinatorial geometries are also considered, but here it is required that the bases be finite. | ||
− | + | Example of a combinatorial geometry. A subset $ S $ | |
+ | of a vector space $ V $ | ||
+ | with the relation | ||
− | One of the fundamental problems in the theory of combinatorial geometries is the so-called critical problem. For the combinatorial geometry defined by a set | + | $$ |
+ | A \rightarrow \overline{A}\; = \ | ||
+ | \mathop{\rm sp} ( A) \cap S, | ||
+ | $$ | ||
+ | |||
+ | defined for all $ A \subseteq S $, | ||
+ | where $ \mathop{\rm sp} ( A) $ | ||
+ | is the linear subspace in $ V $ | ||
+ | spanned by $ A $. | ||
+ | |||
+ | One of the fundamental problems in the theory of combinatorial geometries is the so-called critical problem. For the combinatorial geometry defined by a set $ S $ | ||
+ | in an $ n $- | ||
+ | dimensional projective space over a Galois field, this problem consists in the determination of the smallest positive integer $ k $( | ||
+ | the critical exponent) for which there exists a family of hyperplanes $ H _ {1} \dots H _ {k} $ | ||
+ | distinguishing $ S $. | ||
+ | (A family of hyperplanes distinguishes a set $ S $ | ||
+ | if for every $ t \in S $ | ||
+ | there is at least one hyperplane not containing $ t $.) | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "On the abstract properties of linear dependence" ''Amer. J. Math.'' , '''57''' (1935) pp. 509–533</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H.H. Crapo, G.C. Rota, "On the foundations of combinatorial theory: combinatorial geometries" , M.I.T. (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W.T. Tutte, "Introduction to the theory of matroids" , American Elsevier (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.J. Wilson, "Introduction to graph theory" , Oliver & Boyd (1972)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> K.A. Rybnikov, "Introduction to combinatorial analysis" , Moscow (1972) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D.J.A. Welsh, "Matroid theory" , Acad. Press (1976)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> R. von Randow, "Introduction to the theory of matroids" , Springer (1975)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> N. White (ed.) , ''Theory of matroids'' , Cambridge Univ. Press (1986)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> K.A. Rybnikov (ed.) , ''Combinatorial analysis: exercises and problems'' , Moscow (1982) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "On the abstract properties of linear dependence" ''Amer. J. Math.'' , '''57''' (1935) pp. 509–533</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H.H. Crapo, G.C. Rota, "On the foundations of combinatorial theory: combinatorial geometries" , M.I.T. (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> W.T. Tutte, "Introduction to the theory of matroids" , American Elsevier (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.J. Wilson, "Introduction to graph theory" , Oliver & Boyd (1972)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> K.A. Rybnikov, "Introduction to combinatorial analysis" , Moscow (1972) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> D.J.A. Welsh, "Matroid theory" , Acad. Press (1976)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> R. von Randow, "Introduction to the theory of matroids" , Springer (1975)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> N. White (ed.) , ''Theory of matroids'' , Cambridge Univ. Press (1986)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> K.A. Rybnikov (ed.) , ''Combinatorial analysis: exercises and problems'' , Moscow (1982) (In Russian)</TD></TR></table> |
Latest revision as of 17:45, 4 June 2020
A finite set $ S $
together with a closure relation
$$ A \rightarrow \overline{A}\; , $$
defined for all subsets $ A $ of $ S $( that is, $ A \subseteq \overline{A}\; $, $ A \subseteq B $ implies $ \overline{A}\; \subseteq \overline{B}\; $ and $ \overline{ {\overline{A}\; }}\; = \overline{A}\; $, but not necessarily $ \overline{ {A \cup B }}\; = \overline{A}\; \cup \overline{B}\; $), and satisfying the conditions: 1) for the empty set $ \overline \emptyset \; = \emptyset $; 2) $ \overline{p}\; = p $ for each element $ p \in S $; and 3) if $ p, q \in S $ and $ A \subseteq S $ and if $ q \in \overline{ {A \cup p }}\; $ but $ q \notin \overline{A}\; $, then $ p \in \overline{ {A \cup q }}\; $( the "exchange" property). The closed sets, or subspaces, $ ( \overline{A}\; = A) $ form a geometric lattice (cf. Semi-Dedekind lattice). A subset $ I \subseteq S $ is independent if $ p \notin \overline{ {I \setminus p }}\; $ for all $ p \in I $; all maximal independent sets, or bases, have the same cardinality. The direct sum of combinatorial geometries and the restriction of a combinatorial geometry to a subset $ A $ are defined in the usual way. The cardinality of the bases of the restriction of a combinatorial geometry to $ A $ is called the rank $ r ( A) $ of $ A $. The rank function satisfies the condition
$$ r ( A \cup B) + r ( A \cap B) \leq \ r ( A) + r ( B). $$
A subset $ A \subseteq S $ for which $ r ( A) < | A | $ is said to be dependent; the minimal dependent sets of a combinatorial geometry are called circuits. By dropping conditions 1) and 2) in the definition of a combinatorial geometry one obtains the definition of a pre-geometry or matroid. Infinite combinatorial geometries are also considered, but here it is required that the bases be finite.
Example of a combinatorial geometry. A subset $ S $ of a vector space $ V $ with the relation
$$ A \rightarrow \overline{A}\; = \ \mathop{\rm sp} ( A) \cap S, $$
defined for all $ A \subseteq S $, where $ \mathop{\rm sp} ( A) $ is the linear subspace in $ V $ spanned by $ A $.
One of the fundamental problems in the theory of combinatorial geometries is the so-called critical problem. For the combinatorial geometry defined by a set $ S $ in an $ n $- dimensional projective space over a Galois field, this problem consists in the determination of the smallest positive integer $ k $( the critical exponent) for which there exists a family of hyperplanes $ H _ {1} \dots H _ {k} $ distinguishing $ S $. (A family of hyperplanes distinguishes a set $ S $ if for every $ t \in S $ there is at least one hyperplane not containing $ t $.)
References
[1] | H. Whitney, "On the abstract properties of linear dependence" Amer. J. Math. , 57 (1935) pp. 509–533 |
[2] | H.H. Crapo, G.C. Rota, "On the foundations of combinatorial theory: combinatorial geometries" , M.I.T. (1970) |
[3] | W.T. Tutte, "Introduction to the theory of matroids" , American Elsevier (1971) |
[4] | R.J. Wilson, "Introduction to graph theory" , Oliver & Boyd (1972) |
[5] | K.A. Rybnikov, "Introduction to combinatorial analysis" , Moscow (1972) (In Russian) |
[6] | D.J.A. Welsh, "Matroid theory" , Acad. Press (1976) |
[7] | R. von Randow, "Introduction to the theory of matroids" , Springer (1975) |
[8] | N. White (ed.) , Theory of matroids , Cambridge Univ. Press (1986) |
[9] | K.A. Rybnikov (ed.) , Combinatorial analysis: exercises and problems , Moscow (1982) (In Russian) |
Combinatorial geometry(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Combinatorial_geometry(2)&oldid=15806