|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | c0228001.png |
| + | $#A+1 = 168 n = 0 |
| + | $#C+1 = 168 : ~/encyclopedia/old_files/data/C022/C.0202800 Cobordism of knots, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''knot cobordism (proper bordism of knots, see [[Bordism|Bordism]])'' | | ''knot cobordism (proper bordism of knots, see [[Bordism|Bordism]])'' |
| | | |
− | An equivalence relation on the set of knots, weaker than the isotopy type relation. Two smooth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228001.png" />-dimensional knots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228002.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228003.png" /> are said to be cobordant if there exists a smooth oriented <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228004.png" />-dimensional submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228005.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228006.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228007.png" /> is homeomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228008.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c0228009.png" />. Here the minus sign indicates the opposite orientation. Knots cobordant to the trivial knot are called cobordant to zero, or slice knots. The set of (cobordance) equivalence classes of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280010.png" />-dimensional smooth knots is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280011.png" />. The operation of connected sum defines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280012.png" /> an Abelian group structure. The inverse of the knot cobordism class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280013.png" /> is the knot cobordism class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280014.png" />. | + | An equivalence relation on the set of knots, weaker than the isotopy type relation. Two smooth $ n $- |
| + | dimensional knots $ K _ {1} = ( S ^ {n + 2 } , k _ {1} ^ {n} ) $ |
| + | and $ K _ {2} = ( S ^ {n + 2 } , k _ {2} ^ {n} ) $ |
| + | are said to be cobordant if there exists a smooth oriented $ ( n + 1 ) $- |
| + | dimensional submanifold $ V $ |
| + | of $ [ 0, 1] \times S ^ {n + 2 } $, |
| + | where $ V $ |
| + | is homeomorphic to $ [ 0, 1] \times S ^ {n} $ |
| + | and $ \partial V = V \cap \{ 0, 1 \} \times ( S ^ {n + 2 } ) = ( 0 \times k _ {1} ) \cup ( 1 \times - k _ {2} ) $. |
| + | Here the minus sign indicates the opposite orientation. Knots cobordant to the trivial knot are called cobordant to zero, or slice knots. The set of (cobordance) equivalence classes of $ n $- |
| + | dimensional smooth knots is denoted by $ C _ {n} $. |
| + | The operation of connected sum defines on $ C _ {n} $ |
| + | an Abelian group structure. The inverse of the knot cobordism class $ ( S ^ {n + 2 } , k ^ {n} ) $ |
| + | is the knot cobordism class $ (- S ^ {n + 2 } , - k ^ {n} ) $. |
| | | |
− | For every even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280015.png" /> the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280016.png" /> is zero. The knot cobordism class of an odd-dimensional knot is defined by its [[Seifert matrix|Seifert matrix]]. A square integral matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280017.png" /> is called cobordant to zero if it is unimodularly congruent to a matrix of the form | + | For every even $ n $ |
| + | the group $ C _ {n} $ |
| + | is zero. The knot cobordism class of an odd-dimensional knot is defined by its [[Seifert matrix|Seifert matrix]]. A square integral matrix $ A $ |
| + | is called cobordant to zero if it is unimodularly congruent to a matrix of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280018.png" /></td> </tr></table>
| + | $$ |
| + | \left \| |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280019.png" /> are square matrices of the same dimensions and 0 is the zero matrix. Two square matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280021.png" /> are called cobordant if the matrix
| + | \begin{array}{ll} |
| + | 0 &N _ {1} \\ |
| + | N _ {2} &N _ {3} \\ |
| + | \end{array} |
| + | \right \| , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280022.png" /></td> </tr></table>
| + | where $ N _ {1} , N _ {2} , N _ {3} $ |
| + | are square matrices of the same dimensions and 0 is the zero matrix. Two square matrices $ A _ {1} $ |
| + | and $ A _ {2} $ |
| + | are called cobordant if the matrix |
| | | |
− | is cobordant to zero. A square integral matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280023.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280025.png" />-matrix, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280026.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280027.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280028.png" />. The Seifert matrix of every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280029.png" />-dimensional knot is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280030.png" />-matrix. For every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280031.png" /> the cobordance relation is an equivalence relation on the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280032.png" />-matrices. The set of equivalence classes is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280033.png" />. The operation of direct sum defines on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280034.png" /> an Abelian group structure. One has the Levine homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280035.png" /> which associates with the cobordism class of the knot <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280036.png" /> the cobordism class of the Seifert matrix of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280037.png" />. The Levine homomorphism is an isomorphism for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280038.png" />. The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280039.png" /> is a monomorphism, its image is a subgroup of index 2 in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280040.png" />, consisting of the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280041.png" />-matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280042.png" /> for which the signature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280043.png" /> is divisible by 16. The homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280044.png" /> is an epimorphism; its kernel is non-trivial.
| + | $$ |
| + | \left \| |
| + | \begin{array}{lr} |
| + | A _ {1} & 0 \\ |
| + | 0 &- A _ {2} \\ |
| + | \end{array} |
| + | \ |
| + | \right \| |
| + | $$ |
| | | |
− | For a study of the structure of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280046.png" /> and for the construction of a complete system of invariants of knot cobordism classes one makes use of the following construction. An isometric structure over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280047.png" /> is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280048.png" /> consisting of a non-degenerate quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280049.png" /> given on a finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280050.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280051.png" /> and an isometry <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280052.png" />. An isometric structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280053.png" /> is called cobordant to zero if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280054.png" /> contains a totally-isotropic subspace of half its dimension that is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280055.png" />. The operation of orthogonal sum of forms and direct sum of isometries defines an operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280056.png" /> on the set of isometric structures. Two isometric structures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280058.png" /> are called cobordant if the isometric structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280059.png" /> is cobordant to zero. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280060.png" /> be the set of cobordism classes of isometric structures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280061.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280062.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280063.png" /> is the characteristic polynomial of the isometry <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280064.png" />. In the study of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280066.png" /> an important role is played by the imbeddings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280068.png" />, which are constructed as follows. Every cobordism class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280069.png" />-matrices contains a non-degenerate matrix. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280070.png" /> is a non-degenerate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280071.png" />-matrix, put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280073.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280074.png" /> be the isometric structure whose form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280075.png" /> has the given matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280076.png" />, while its isometry <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280077.png" /> has the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280078.png" />. This gives a well-defined homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280079.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280080.png" />.
| + | is cobordant to zero. A square integral matrix $ A $ |
| + | is called an $ \epsilon $- |
| + | matrix, where $ \epsilon = + 1 $ |
| + | or $ - 1 $, |
| + | if $ \mathop{\rm det} ( A + \epsilon A ^ \prime ) = \pm 1 $. |
| + | The Seifert matrix of every $ ( 2q - 1) $- |
| + | dimensional knot is a $ (- 1) ^ {q} $- |
| + | matrix. For every $ \epsilon $ |
| + | the cobordance relation is an equivalence relation on the set of all $ \epsilon $- |
| + | matrices. The set of equivalence classes is denoted by $ G _ \epsilon $. |
| + | The operation of direct sum defines on $ G _ \epsilon $ |
| + | an Abelian group structure. One has the Levine homomorphism $ \phi _ {q} : C _ {2q - 1 } \rightarrow G _ {(- 1) ^ {q} } $ |
| + | which associates with the cobordism class of the knot $ K $ |
| + | the cobordism class of the Seifert matrix of $ K $. |
| + | The Levine homomorphism is an isomorphism for all $ q \geq 3 $. |
| + | The homomorphism $ \phi _ {2} : C _ {3} \rightarrow G _ {+} 1 $ |
| + | is a monomorphism, its image is a subgroup of index 2 in $ G _ {+} 1 $, |
| + | consisting of the class of $ (+ 1) $- |
| + | matrices $ A $ |
| + | for which the signature of $ A + A ^ \prime $ |
| + | is divisible by 16. The homomorphism $ \phi _ {1} : C _ {+} 1 \rightarrow G _ {-} 1 $ |
| + | is an epimorphism; its kernel is non-trivial. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280081.png" /> be an isometric structure on a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280082.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280083.png" />. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280084.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280086.png" />-primary component of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280087.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280088.png" /> for large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280089.png" />. A polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280090.png" /> is called reciprocal if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280091.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280092.png" />. For each irreducible reciprocal polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280093.png" /> denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280094.png" /> the exponent, reduced modulo 2, with which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280095.png" /> divides the characteristic polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280096.png" /> of the isometry <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280097.png" />. For every reciprocal polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280098.png" /> irreducible over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c02280099.png" />, denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800100.png" /> the signature of the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800101.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800102.png" />. For each prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800103.png" /> and each reciprocal polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800104.png" /> irreducible over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800105.png" />, denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800106.png" /> the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800107.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800108.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800109.png" /> is the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800110.png" />-adic numbers. Put
| + | For a study of the structure of the groups $ G _ {+} 1 $ |
| + | and $ G _ {-} 1 $ |
| + | and for the construction of a complete system of invariants of knot cobordism classes one makes use of the following construction. An isometric structure over a field $ F $ |
| + | is a pair $ (\langle , \rangle; T) $ |
| + | consisting of a non-degenerate quadratic form $ \langle , \rangle $ |
| + | given on a finite-dimensional vector space $ V $ |
| + | over $ F $ |
| + | and an isometry $ T: V \rightarrow V $. |
| + | An isometric structure $ (\langle , \rangle; T) $ |
| + | is called cobordant to zero if $ V $ |
| + | contains a totally-isotropic subspace of half its dimension that is invariant under $ T $. |
| + | The operation of orthogonal sum of forms and direct sum of isometries defines an operation $ \perp $ |
| + | on the set of isometric structures. Two isometric structures $ (\langle , \rangle; T) $ |
| + | and $ (\langle , \rangle ^ \prime ; T ^ { \prime } ) $ |
| + | are called cobordant if the isometric structure $ (\langle , \rangle; T) \perp (- \langle , \rangle ^ \prime ; T ^ { \prime } ) $ |
| + | is cobordant to zero. Let $ G _ {F} $ |
| + | be the set of cobordism classes of isometric structures $ (\langle , \rangle; T) $ |
| + | satisfying the condition $ \Delta _ {T} ( 1) \times \Delta _ {T} (- 1) \neq 0 $, |
| + | where $ \Delta _ {T} ( t) $ |
| + | is the characteristic polynomial of the isometry $ T $. |
| + | In the study of the groups $ G _ {+} 1 $ |
| + | and $ G _ {-} 1 $ |
| + | an important role is played by the imbeddings $ \chi _ {+} : G _ {+} 1 \rightarrow G _ {Q} $ |
| + | and $ \chi _ {-} : G _ {-} 1 \rightarrow G _ {Q} $, |
| + | which are constructed as follows. Every cobordism class of $ \epsilon $- |
| + | matrices contains a non-degenerate matrix. If $ A $ |
| + | is a non-degenerate $ \epsilon $- |
| + | matrix, put $ B = - A ^ {-} 1 A ^ \prime $, |
| + | $ Q = A + A ^ \prime $ |
| + | and let $ (\langle , \rangle; T) $ |
| + | be the isometric structure whose form $ \langle , \rangle $ |
| + | has the given matrix $ Q $, |
| + | while its isometry $ T $ |
| + | has the matrix $ B $. |
| + | This gives a well-defined homomorphism $ \chi _ \epsilon $ |
| + | with $ \mathop{\rm ker} \chi _ \epsilon = 0 $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800111.png" /></td> </tr></table>
| + | Let $ \alpha = (\langle , \rangle; T) $ |
| + | be an isometric structure on a vector space $ V $ |
| + | and let $ \lambda \in F [ t] $. |
| + | Denote by $ V _ \lambda $ |
| + | the $ \lambda $- |
| + | primary component of $ V $, |
| + | i.e. $ V _ \lambda = \mathop{\rm ker} \lambda ( T) ^ {N} $ |
| + | for large $ N $. |
| + | A polynomial $ \lambda ( t) = t ^ {k} + a _ {1} t ^ {k - 1 } + \dots + 1 $ |
| + | is called reciprocal if $ a _ {i} = a _ {k - i } $ |
| + | for all $ i $. |
| + | For each irreducible reciprocal polynomial $ \lambda \in \mathbf Q [ t] $ |
| + | denote by $ \epsilon _ \lambda ( \alpha ) $ |
| + | the exponent, reduced modulo 2, with which $ \lambda $ |
| + | divides the characteristic polynomial $ \Delta _ {T} $ |
| + | of the isometry $ T $. |
| + | For every reciprocal polynomial $ \lambda \in \mathbf R [ t] $ |
| + | irreducible over $ \mathbf R [ t] $, |
| + | denote by $ \sigma _ \lambda ( \alpha ) $ |
| + | the signature of the restriction of $ \langle , \rangle $ |
| + | to $ ( V \otimes \mathbf R ) _ \lambda $. |
| + | For each prime number $ p $ |
| + | and each reciprocal polynomial $ \lambda \in \mathbf Q _ {p} [ t] $ |
| + | irreducible over $ \mathbf Q _ {p} [ t] $, |
| + | denote by $ \langle , \rangle _ \lambda ^ {p} $ |
| + | the restriction of $ \langle , \rangle $ |
| + | to $ ( V \otimes \mathbf Q _ {p} ) _ \lambda $, |
| + | where $ \mathbf Q _ {p} $ |
| + | is the field of $ p $- |
| + | adic numbers. Put |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800112.png" /> is the Hilbert symbol in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800114.png" /> is the Hasse symbol and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800115.png" /> is the rank of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800116.png" />. Two isometric structures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800117.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800118.png" /> are cobordant if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800119.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800120.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800121.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800122.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800123.png" /> for which these invariants are defined (cf. [[#References|[3]]], [[#References|[4]]]).
| + | $$ |
| + | \mu _ \lambda ^ {p} ( \alpha ) = \ |
| + | (- 1, 1) ^ {r ( r + 3) / 2 } |
| + | ( \mathop{\rm det} \langle , \rangle _ \lambda ^ {p} , - 1 ) ^ {r} |
| + | S (\langle , \rangle _ \lambda ^ {p} ), |
| + | $$ |
| | | |
− | The compositions of the Levine homomorphism, the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800124.png" /> and the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800125.png" /> associate with every odd-dimensional knot <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800126.png" /> the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800127.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800128.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800129.png" />. Two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800130.png" />-dimensional knots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800131.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800132.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800133.png" />, are cobordant if and only if
| + | where $ ( , ) $ |
| + | is the Hilbert symbol in $ \mathbf Q _ {p} $, |
| + | $ S $ |
| + | is the Hasse symbol and $ 2r $ |
| + | is the rank of $ \langle , \rangle _ \lambda ^ {p} $. |
| + | Two isometric structures $ \alpha $ |
| + | and $ \beta $ |
| + | are cobordant if and only if $ \epsilon _ \lambda ( \alpha ) = \epsilon _ \lambda ( \beta ) $, |
| + | $ \sigma _ \lambda ( \alpha ) = \sigma _ \lambda ( \beta ) $ |
| + | and $ \mu _ \lambda ^ {p} ( \alpha ) = \mu _ \lambda ^ {p} ( \beta ) $ |
| + | for all $ \lambda $ |
| + | and $ p $ |
| + | for which these invariants are defined (cf. [[#References|[3]]], [[#References|[4]]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800134.png" /></td> </tr></table>
| + | The compositions of the Levine homomorphism, the homomorphism $ \chi $ |
| + | and the functions $ \epsilon _ \lambda , \sigma _ \lambda , \mu _ \lambda ^ {p} $ |
| + | associate with every odd-dimensional knot $ K $ |
| + | the numbers $ \epsilon _ \lambda ( K) \in \{ 0, 1 \} $, |
| + | $ \sigma _ \lambda ( K) \in \mathbf Z $, |
| + | $ \mu _ \lambda ^ {p} ( K) \in \{ - 1, 1 \} $. |
| + | Two $ ( 2q - 1) $- |
| + | dimensional knots $ K _ {1} $ |
| + | and $ K _ {2} $, |
| + | where $ q > 1 $, |
| + | are cobordant if and only if |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800135.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800136.png" /> for which these invariants are defined. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800137.png" /> is equal to the signature of the knot <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800138.png" /> (cf. [[Knots and links, quadratic forms of|Knots and links, quadratic forms of]]), where the sum is extended over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800139.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800140.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800141.png" />, and in the sum only a finite number of terms are distinct from zero.
| + | $$ |
| + | \epsilon _ \lambda ( K _ {1} ) = \ |
| + | \epsilon ( K _ {2} ),\ \ |
| + | \sigma _ \lambda ( K _ {1} ) = \ |
| + | \sigma _ \lambda ( K _ {2} ),\ \ |
| + | \mu _ \lambda ^ {p} |
| + | ( K _ {1} ) = \ |
| + | \mu _ \lambda ^ {p} |
| + | ( K _ {2} ) |
| + | $$ |
| | | |
− | Similarly one defines the group of locally flat or piecewise-linear knot cobordisms, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800142.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800143.png" />, respectively. For all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800144.png" /> one has an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800145.png" />. The natural mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800146.png" /> is an isomorphism for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800147.png" />, while for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800148.png" /> it is a monomorphism with an image of index 2. This means, in particular, that there exists a non-smooth locally flat topologically three-dimensional knot in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800149.png" /> (cf. [[#References|[5]]]).
| + | for all $ \lambda $ |
| + | and $ p $ |
| + | for which these invariants are defined. $ \sum \sigma _ \lambda ( K) $ |
| + | is equal to the signature of the knot $ K $( |
| + | cf. [[Knots and links, quadratic forms of|Knots and links, quadratic forms of]]), where the sum is extended over all $ \lambda ( t) $ |
| + | of the form $ t ^ {2} - 2t \cos \theta + 1 $, |
| + | where $ 0 < \theta < \pi $, |
| + | and in the sum only a finite number of terms are distinct from zero. |
| | | |
− | The theory of cobordism of knots is connected with the study of singularities of not locally flat or piecewise-linear imbeddings of codimension 2. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800150.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800151.png" />-dimensional oriented manifold, imbedded as a subcomplex in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800152.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800153.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800154.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800155.png" /> is a small star-shaped neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800156.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800157.png" />, then the singularity of the imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800158.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800159.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800160.png" /> may be measured as follows. The boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800161.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800162.png" />-dimensional sphere, the orientation of which is defined by that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800163.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800164.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800165.png" />-dimensional sphere the orientation of which is defined by that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800166.png" />. This defines an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800167.png" />-dimensional knot <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800168.png" />, called the singularity of the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800169.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022800/c022800170.png" />. | + | Similarly one defines the group of locally flat or piecewise-linear knot cobordisms, denoted by $ C _ {n} ^ { \mathop{\rm TOP} } $ |
| + | and $ C _ {n} ^ { \mathop{\rm PL} } $, |
| + | respectively. For all $ n $ |
| + | one has an isomorphism $ C _ {n} ^ { \mathop{\rm PL} } \approx C _ {n} $. |
| + | The natural mapping $ C _ {n} \rightarrow C _ {n} ^ { \mathop{\rm TOP} } $ |
| + | is an isomorphism for $ n > 3 $, |
| + | while for $ n = 3 $ |
| + | it is a monomorphism with an image of index 2. This means, in particular, that there exists a non-smooth locally flat topologically three-dimensional knot in $ S ^ {5} $( |
| + | cf. [[#References|[5]]]). |
| + | |
| + | The theory of cobordism of knots is connected with the study of singularities of not locally flat or piecewise-linear imbeddings of codimension 2. If $ P $ |
| + | is an $ ( n + 2 ) $- |
| + | dimensional oriented manifold, imbedded as a subcomplex in an $ ( n + 3 ) $- |
| + | dimensional manifold $ M $, |
| + | $ x \in P $, |
| + | and $ N $ |
| + | is a small star-shaped neighbourhood of $ x $ |
| + | in $ M $, |
| + | then the singularity of the imbedding of $ P $ |
| + | in $ M $ |
| + | at $ x $ |
| + | may be measured as follows. The boundary $ \partial N $ |
| + | is an $ ( n + 2 ) $- |
| + | dimensional sphere, the orientation of which is defined by that of $ M $; |
| + | $ P \cap \partial N $ |
| + | is an $ n $- |
| + | dimensional sphere the orientation of which is defined by that of $ P $. |
| + | This defines an $ n $- |
| + | dimensional knot $ ( \partial N, \partial N \cap P) $, |
| + | called the singularity of the imbedding $ P \subset M $ |
| + | at the point $ x $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.H. Fox, J.W. Milnor, "Singularities of 2-spheres in 4-space and cobordism of knots" ''Osaka Math. J.'' , '''3''' (1966) pp. 257–267 {{MR|0211392}} {{ZBL|0146.45501}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Kervaire, "Les noeuds de dimensions supérieures" ''Bull. Soc. Math. France'' , '''93''' (1965) pp. 225–271 {{MR|0189052}} {{ZBL|0141.21201}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Levine, "Knot cobordism groups in codimension 2" ''Comment. Math. Helv.'' , '''44''' (1969) pp. 229–244</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Levine, "Invariants of knot cobordism" ''Invent. Math.'' , '''8''' (1969) pp. 98–110 {{MR|0253348}} {{ZBL|0179.52401}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S.E. Capell, J.L. Shaneson, "Topological knots and knot cobordism" ''Topology'' , '''12''' (1973) pp. 33–40 {{MR|321099}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> N.W. Stoltzfus, "Unraveling the integral knot concordance group" ''Mem. Amer. Math. Soc.'' , '''12''' (1977) pp. 192 {{MR|0467764}} {{ZBL|0366.57005}} </TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.H. Fox, J.W. Milnor, "Singularities of 2-spheres in 4-space and cobordism of knots" ''Osaka Math. J.'' , '''3''' (1966) pp. 257–267 {{MR|0211392}} {{ZBL|0146.45501}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Kervaire, "Les noeuds de dimensions supérieures" ''Bull. Soc. Math. France'' , '''93''' (1965) pp. 225–271 {{MR|0189052}} {{ZBL|0141.21201}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Levine, "Knot cobordism groups in codimension 2" ''Comment. Math. Helv.'' , '''44''' (1969) pp. 229–244</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Levine, "Invariants of knot cobordism" ''Invent. Math.'' , '''8''' (1969) pp. 98–110 {{MR|0253348}} {{ZBL|0179.52401}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> S.E. Capell, J.L. Shaneson, "Topological knots and knot cobordism" ''Topology'' , '''12''' (1973) pp. 33–40 {{MR|321099}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> N.W. Stoltzfus, "Unraveling the integral knot concordance group" ''Mem. Amer. Math. Soc.'' , '''12''' (1977) pp. 192 {{MR|0467764}} {{ZBL|0366.57005}} </TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
knot cobordism (proper bordism of knots, see Bordism)
An equivalence relation on the set of knots, weaker than the isotopy type relation. Two smooth $ n $-
dimensional knots $ K _ {1} = ( S ^ {n + 2 } , k _ {1} ^ {n} ) $
and $ K _ {2} = ( S ^ {n + 2 } , k _ {2} ^ {n} ) $
are said to be cobordant if there exists a smooth oriented $ ( n + 1 ) $-
dimensional submanifold $ V $
of $ [ 0, 1] \times S ^ {n + 2 } $,
where $ V $
is homeomorphic to $ [ 0, 1] \times S ^ {n} $
and $ \partial V = V \cap \{ 0, 1 \} \times ( S ^ {n + 2 } ) = ( 0 \times k _ {1} ) \cup ( 1 \times - k _ {2} ) $.
Here the minus sign indicates the opposite orientation. Knots cobordant to the trivial knot are called cobordant to zero, or slice knots. The set of (cobordance) equivalence classes of $ n $-
dimensional smooth knots is denoted by $ C _ {n} $.
The operation of connected sum defines on $ C _ {n} $
an Abelian group structure. The inverse of the knot cobordism class $ ( S ^ {n + 2 } , k ^ {n} ) $
is the knot cobordism class $ (- S ^ {n + 2 } , - k ^ {n} ) $.
For every even $ n $
the group $ C _ {n} $
is zero. The knot cobordism class of an odd-dimensional knot is defined by its Seifert matrix. A square integral matrix $ A $
is called cobordant to zero if it is unimodularly congruent to a matrix of the form
$$
\left \|
\begin{array}{ll}
0 &N _ {1} \\
N _ {2} &N _ {3} \\
\end{array}
\right \| ,
$$
where $ N _ {1} , N _ {2} , N _ {3} $
are square matrices of the same dimensions and 0 is the zero matrix. Two square matrices $ A _ {1} $
and $ A _ {2} $
are called cobordant if the matrix
$$
\left \|
\begin{array}{lr}
A _ {1} & 0 \\
0 &- A _ {2} \\
\end{array}
\
\right \|
$$
is cobordant to zero. A square integral matrix $ A $
is called an $ \epsilon $-
matrix, where $ \epsilon = + 1 $
or $ - 1 $,
if $ \mathop{\rm det} ( A + \epsilon A ^ \prime ) = \pm 1 $.
The Seifert matrix of every $ ( 2q - 1) $-
dimensional knot is a $ (- 1) ^ {q} $-
matrix. For every $ \epsilon $
the cobordance relation is an equivalence relation on the set of all $ \epsilon $-
matrices. The set of equivalence classes is denoted by $ G _ \epsilon $.
The operation of direct sum defines on $ G _ \epsilon $
an Abelian group structure. One has the Levine homomorphism $ \phi _ {q} : C _ {2q - 1 } \rightarrow G _ {(- 1) ^ {q} } $
which associates with the cobordism class of the knot $ K $
the cobordism class of the Seifert matrix of $ K $.
The Levine homomorphism is an isomorphism for all $ q \geq 3 $.
The homomorphism $ \phi _ {2} : C _ {3} \rightarrow G _ {+} 1 $
is a monomorphism, its image is a subgroup of index 2 in $ G _ {+} 1 $,
consisting of the class of $ (+ 1) $-
matrices $ A $
for which the signature of $ A + A ^ \prime $
is divisible by 16. The homomorphism $ \phi _ {1} : C _ {+} 1 \rightarrow G _ {-} 1 $
is an epimorphism; its kernel is non-trivial.
For a study of the structure of the groups $ G _ {+} 1 $
and $ G _ {-} 1 $
and for the construction of a complete system of invariants of knot cobordism classes one makes use of the following construction. An isometric structure over a field $ F $
is a pair $ (\langle , \rangle; T) $
consisting of a non-degenerate quadratic form $ \langle , \rangle $
given on a finite-dimensional vector space $ V $
over $ F $
and an isometry $ T: V \rightarrow V $.
An isometric structure $ (\langle , \rangle; T) $
is called cobordant to zero if $ V $
contains a totally-isotropic subspace of half its dimension that is invariant under $ T $.
The operation of orthogonal sum of forms and direct sum of isometries defines an operation $ \perp $
on the set of isometric structures. Two isometric structures $ (\langle , \rangle; T) $
and $ (\langle , \rangle ^ \prime ; T ^ { \prime } ) $
are called cobordant if the isometric structure $ (\langle , \rangle; T) \perp (- \langle , \rangle ^ \prime ; T ^ { \prime } ) $
is cobordant to zero. Let $ G _ {F} $
be the set of cobordism classes of isometric structures $ (\langle , \rangle; T) $
satisfying the condition $ \Delta _ {T} ( 1) \times \Delta _ {T} (- 1) \neq 0 $,
where $ \Delta _ {T} ( t) $
is the characteristic polynomial of the isometry $ T $.
In the study of the groups $ G _ {+} 1 $
and $ G _ {-} 1 $
an important role is played by the imbeddings $ \chi _ {+} : G _ {+} 1 \rightarrow G _ {Q} $
and $ \chi _ {-} : G _ {-} 1 \rightarrow G _ {Q} $,
which are constructed as follows. Every cobordism class of $ \epsilon $-
matrices contains a non-degenerate matrix. If $ A $
is a non-degenerate $ \epsilon $-
matrix, put $ B = - A ^ {-} 1 A ^ \prime $,
$ Q = A + A ^ \prime $
and let $ (\langle , \rangle; T) $
be the isometric structure whose form $ \langle , \rangle $
has the given matrix $ Q $,
while its isometry $ T $
has the matrix $ B $.
This gives a well-defined homomorphism $ \chi _ \epsilon $
with $ \mathop{\rm ker} \chi _ \epsilon = 0 $.
Let $ \alpha = (\langle , \rangle; T) $
be an isometric structure on a vector space $ V $
and let $ \lambda \in F [ t] $.
Denote by $ V _ \lambda $
the $ \lambda $-
primary component of $ V $,
i.e. $ V _ \lambda = \mathop{\rm ker} \lambda ( T) ^ {N} $
for large $ N $.
A polynomial $ \lambda ( t) = t ^ {k} + a _ {1} t ^ {k - 1 } + \dots + 1 $
is called reciprocal if $ a _ {i} = a _ {k - i } $
for all $ i $.
For each irreducible reciprocal polynomial $ \lambda \in \mathbf Q [ t] $
denote by $ \epsilon _ \lambda ( \alpha ) $
the exponent, reduced modulo 2, with which $ \lambda $
divides the characteristic polynomial $ \Delta _ {T} $
of the isometry $ T $.
For every reciprocal polynomial $ \lambda \in \mathbf R [ t] $
irreducible over $ \mathbf R [ t] $,
denote by $ \sigma _ \lambda ( \alpha ) $
the signature of the restriction of $ \langle , \rangle $
to $ ( V \otimes \mathbf R ) _ \lambda $.
For each prime number $ p $
and each reciprocal polynomial $ \lambda \in \mathbf Q _ {p} [ t] $
irreducible over $ \mathbf Q _ {p} [ t] $,
denote by $ \langle , \rangle _ \lambda ^ {p} $
the restriction of $ \langle , \rangle $
to $ ( V \otimes \mathbf Q _ {p} ) _ \lambda $,
where $ \mathbf Q _ {p} $
is the field of $ p $-
adic numbers. Put
$$
\mu _ \lambda ^ {p} ( \alpha ) = \
(- 1, 1) ^ {r ( r + 3) / 2 }
( \mathop{\rm det} \langle , \rangle _ \lambda ^ {p} , - 1 ) ^ {r}
S (\langle , \rangle _ \lambda ^ {p} ),
$$
where $ ( , ) $
is the Hilbert symbol in $ \mathbf Q _ {p} $,
$ S $
is the Hasse symbol and $ 2r $
is the rank of $ \langle , \rangle _ \lambda ^ {p} $.
Two isometric structures $ \alpha $
and $ \beta $
are cobordant if and only if $ \epsilon _ \lambda ( \alpha ) = \epsilon _ \lambda ( \beta ) $,
$ \sigma _ \lambda ( \alpha ) = \sigma _ \lambda ( \beta ) $
and $ \mu _ \lambda ^ {p} ( \alpha ) = \mu _ \lambda ^ {p} ( \beta ) $
for all $ \lambda $
and $ p $
for which these invariants are defined (cf. [3], [4]).
The compositions of the Levine homomorphism, the homomorphism $ \chi $
and the functions $ \epsilon _ \lambda , \sigma _ \lambda , \mu _ \lambda ^ {p} $
associate with every odd-dimensional knot $ K $
the numbers $ \epsilon _ \lambda ( K) \in \{ 0, 1 \} $,
$ \sigma _ \lambda ( K) \in \mathbf Z $,
$ \mu _ \lambda ^ {p} ( K) \in \{ - 1, 1 \} $.
Two $ ( 2q - 1) $-
dimensional knots $ K _ {1} $
and $ K _ {2} $,
where $ q > 1 $,
are cobordant if and only if
$$
\epsilon _ \lambda ( K _ {1} ) = \
\epsilon ( K _ {2} ),\ \
\sigma _ \lambda ( K _ {1} ) = \
\sigma _ \lambda ( K _ {2} ),\ \
\mu _ \lambda ^ {p}
( K _ {1} ) = \
\mu _ \lambda ^ {p}
( K _ {2} )
$$
for all $ \lambda $
and $ p $
for which these invariants are defined. $ \sum \sigma _ \lambda ( K) $
is equal to the signature of the knot $ K $(
cf. Knots and links, quadratic forms of), where the sum is extended over all $ \lambda ( t) $
of the form $ t ^ {2} - 2t \cos \theta + 1 $,
where $ 0 < \theta < \pi $,
and in the sum only a finite number of terms are distinct from zero.
Similarly one defines the group of locally flat or piecewise-linear knot cobordisms, denoted by $ C _ {n} ^ { \mathop{\rm TOP} } $
and $ C _ {n} ^ { \mathop{\rm PL} } $,
respectively. For all $ n $
one has an isomorphism $ C _ {n} ^ { \mathop{\rm PL} } \approx C _ {n} $.
The natural mapping $ C _ {n} \rightarrow C _ {n} ^ { \mathop{\rm TOP} } $
is an isomorphism for $ n > 3 $,
while for $ n = 3 $
it is a monomorphism with an image of index 2. This means, in particular, that there exists a non-smooth locally flat topologically three-dimensional knot in $ S ^ {5} $(
cf. [5]).
The theory of cobordism of knots is connected with the study of singularities of not locally flat or piecewise-linear imbeddings of codimension 2. If $ P $
is an $ ( n + 2 ) $-
dimensional oriented manifold, imbedded as a subcomplex in an $ ( n + 3 ) $-
dimensional manifold $ M $,
$ x \in P $,
and $ N $
is a small star-shaped neighbourhood of $ x $
in $ M $,
then the singularity of the imbedding of $ P $
in $ M $
at $ x $
may be measured as follows. The boundary $ \partial N $
is an $ ( n + 2 ) $-
dimensional sphere, the orientation of which is defined by that of $ M $;
$ P \cap \partial N $
is an $ n $-
dimensional sphere the orientation of which is defined by that of $ P $.
This defines an $ n $-
dimensional knot $ ( \partial N, \partial N \cap P) $,
called the singularity of the imbedding $ P \subset M $
at the point $ x $.
References
[1] | R.H. Fox, J.W. Milnor, "Singularities of 2-spheres in 4-space and cobordism of knots" Osaka Math. J. , 3 (1966) pp. 257–267 MR0211392 Zbl 0146.45501 |
[2] | M.A. Kervaire, "Les noeuds de dimensions supérieures" Bull. Soc. Math. France , 93 (1965) pp. 225–271 MR0189052 Zbl 0141.21201 |
[3] | J. Levine, "Knot cobordism groups in codimension 2" Comment. Math. Helv. , 44 (1969) pp. 229–244 |
[4] | J. Levine, "Invariants of knot cobordism" Invent. Math. , 8 (1969) pp. 98–110 MR0253348 Zbl 0179.52401 |
[5] | S.E. Capell, J.L. Shaneson, "Topological knots and knot cobordism" Topology , 12 (1973) pp. 33–40 MR321099 |
[6] | N.W. Stoltzfus, "Unraveling the integral knot concordance group" Mem. Amer. Math. Soc. , 12 (1977) pp. 192 MR0467764 Zbl 0366.57005 |
Another term for cobordance of knots is concordance of knots, and correspondingly one has the knot concordance group.
References
[a1] | L.H. Kaufmann, "On knots" , Princeton Univ. Press (1987) |