Namespaces
Variants
Actions

Difference between revisions of "Closed subscheme"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
A subscheme of a scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225901.png" /> defined by a quasi-coherent sheaf of ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225902.png" /> of the structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225903.png" /> as follows: The topological space of the subscheme, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225904.png" />, is the support of the quotient sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225905.png" />, and the structure sheaf is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225906.png" /> to its support. A morphism of schemes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225907.png" /> is called a closed imbedding if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225908.png" /> is an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c0225909.png" /> onto some closed subscheme in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259010.png" />; a closed imbedding is a monomorphism in the category of schemes. For any closed subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259011.png" /> there exists a minimal closed subscheme in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259012.png" /> with space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259013.png" />, known as the reduced closed subscheme with space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259014.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259015.png" /> is a subscheme of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259016.png" />, then the smallest closed subscheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259018.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259019.png" /> is known as the (schematic) closure of the subscheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259020.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022590/c02259021.png" />.
+
<!--
 +
c0225901.png
 +
$#A+1 = 21 n = 0
 +
$#C+1 = 21 : ~/encyclopedia/old_files/data/C022/C.0202590 Closed subscheme
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
 +
{{TEX|auto}}
 +
{{TEX|done}}
  
 +
A subscheme of a scheme  $  X $
 +
defined by a quasi-coherent sheaf of ideals  $  J $
 +
of the structure sheaf  $  {\mathcal O} _ {X} $
 +
as follows: The topological space of the subscheme,  $  V ( J ) $,
 +
is the support of the quotient sheaf  $  {\mathcal O} _ {X} / J $,
 +
and the structure sheaf is the restriction of  $  {\mathcal O} _ {X} / J $
 +
to its support. A morphism of schemes  $  f :  Y \rightarrow X $
 +
is called a closed imbedding if  $  f $
 +
is an isomorphism of  $  Y $
 +
onto some closed subscheme in  $  X $;
 +
a closed imbedding is a monomorphism in the category of schemes. For any closed subset  $  Y \subset  X $
 +
there exists a minimal closed subscheme in  $  X $
 +
with space  $  Y $,
 +
known as the reduced closed subscheme with space  $  Y $.
 +
If  $  Y $
 +
is a subscheme of  $  X $,
 +
then the smallest closed subscheme  $  Y _ {1} $
 +
of  $  X $
 +
containing  $  Y $
 +
is known as the (schematic) closure of the subscheme  $  Y $
 +
in  $  X $.
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne,   "Algebraic geometry" , Springer (1977)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table>

Latest revision as of 17:44, 4 June 2020


A subscheme of a scheme $ X $ defined by a quasi-coherent sheaf of ideals $ J $ of the structure sheaf $ {\mathcal O} _ {X} $ as follows: The topological space of the subscheme, $ V ( J ) $, is the support of the quotient sheaf $ {\mathcal O} _ {X} / J $, and the structure sheaf is the restriction of $ {\mathcal O} _ {X} / J $ to its support. A morphism of schemes $ f : Y \rightarrow X $ is called a closed imbedding if $ f $ is an isomorphism of $ Y $ onto some closed subscheme in $ X $; a closed imbedding is a monomorphism in the category of schemes. For any closed subset $ Y \subset X $ there exists a minimal closed subscheme in $ X $ with space $ Y $, known as the reduced closed subscheme with space $ Y $. If $ Y $ is a subscheme of $ X $, then the smallest closed subscheme $ Y _ {1} $ of $ X $ containing $ Y $ is known as the (schematic) closure of the subscheme $ Y $ in $ X $.

Comments

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001
How to Cite This Entry:
Closed subscheme. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Closed_subscheme&oldid=17023
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article