Difference between revisions of "Charlier polynomials"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0217901.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/C021/C.0201790 Charlier polynomials | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | Polynomials that are orthogonal on the system of non-negative integer points with an integral weight $ d \sigma ( x) $, | ||
+ | where $ \sigma ( x) $ | ||
+ | is a step function with jumps defined by the formula | ||
+ | |||
+ | $$ | ||
+ | j( x) = e ^ {-} a | ||
+ | \frac{a ^ {x} }{x!} | ||
+ | ,\ \ | ||
+ | x = 0, 1 \dots \ \ | ||
+ | a > 0. | ||
+ | $$ | ||
The orthonormal Charlier polynomials have the following representations: | The orthonormal Charlier polynomials have the following representations: | ||
− | + | $$ | |
+ | P _ {n} ( x; a) = \sqrt { | ||
+ | \frac{a ^ {n} }{n!} | ||
+ | } \sum _ { k= } 0 ^ { n } (- 1) ^ {n-} k | ||
+ | \left ( \begin{array}{c} | ||
+ | n \\ | ||
+ | k | ||
+ | \end{array} | ||
+ | \right ) k! a ^ {-} k \left ( \begin{array}{c} | ||
+ | x \\ | ||
+ | k | ||
+ | \end{array} | ||
+ | \right ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | a ^ {n / 2 } ( n!) ^ {- 1 / 2 } [ j( x)] ^ {-} 1 \Delta ^ {n} j ( x- n). | ||
+ | $$ | ||
The Charlier polynomials are connected with the [[Laguerre polynomials|Laguerre polynomials]] by | The Charlier polynomials are connected with the [[Laguerre polynomials|Laguerre polynomials]] by | ||
− | + | $$ | |
+ | P _ {n} ( x; a) = \sqrt {n! over {a ^ {n} } } L _ {n} ^ {(} x- n) ( a) = \ | ||
+ | \sqrt {n! over {a ^ {n} } } L _ {n} ( a; x- n). | ||
+ | $$ | ||
− | Introduced by C. Charlier [[#References|[1]]]. Since the function | + | Introduced by C. Charlier [[#References|[1]]]. Since the function $ j( x) $ |
+ | defines a Poisson distribution, the polynomials $ \{ P _ {n} ( x; a) \} $ | ||
+ | are called Charlier–Poisson polynomials. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Charlier, "Application de la théorie des probabilités à l'astronomie" , Paris (1931)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Charlier, "Application de la théorie des probabilités à l'astronomie" , Paris (1931)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR></table> | ||
+ | ====Comments==== | ||
+ | In the formula above, $ \Delta $ | ||
+ | denotes taking first differences, i.e. $ \Delta f ( x) = f ( x + 1 ) - f ( x) $. | ||
+ | Another common notation and an expression by hypergeometric functions is: | ||
+ | $$ | ||
+ | C _ {n} ( x ; a ) = \ | ||
− | = | + | \frac{P _ {n} ( x ; a ) }{P _ {n} ( 0 ; a ) } |
− | + | = \ | |
− | + | {} _ {2} F _ {0} ( - n , - x ; - a ^ {-} 1 ) . | |
− | + | $$ |
Revision as of 16:43, 4 June 2020
Polynomials that are orthogonal on the system of non-negative integer points with an integral weight $ d \sigma ( x) $,
where $ \sigma ( x) $
is a step function with jumps defined by the formula
$$ j( x) = e ^ {-} a \frac{a ^ {x} }{x!} ,\ \ x = 0, 1 \dots \ \ a > 0. $$
The orthonormal Charlier polynomials have the following representations:
$$ P _ {n} ( x; a) = \sqrt { \frac{a ^ {n} }{n!} } \sum _ { k= } 0 ^ { n } (- 1) ^ {n-} k \left ( \begin{array}{c} n \\ k \end{array} \right ) k! a ^ {-} k \left ( \begin{array}{c} x \\ k \end{array} \right ) = $$
$$ = \ a ^ {n / 2 } ( n!) ^ {- 1 / 2 } [ j( x)] ^ {-} 1 \Delta ^ {n} j ( x- n). $$
The Charlier polynomials are connected with the Laguerre polynomials by
$$ P _ {n} ( x; a) = \sqrt {n! over {a ^ {n} } } L _ {n} ^ {(} x- n) ( a) = \ \sqrt {n! over {a ^ {n} } } L _ {n} ( a; x- n). $$
Introduced by C. Charlier [1]. Since the function $ j( x) $ defines a Poisson distribution, the polynomials $ \{ P _ {n} ( x; a) \} $ are called Charlier–Poisson polynomials.
References
[1] | C. Charlier, "Application de la théorie des probabilités à l'astronomie" , Paris (1931) |
[2] | H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953) |
[3] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
Comments
In the formula above, $ \Delta $ denotes taking first differences, i.e. $ \Delta f ( x) = f ( x + 1 ) - f ( x) $. Another common notation and an expression by hypergeometric functions is:
$$ C _ {n} ( x ; a ) = \ \frac{P _ {n} ( x ; a ) }{P _ {n} ( 0 ; a ) } = \ {} _ {2} F _ {0} ( - n , - x ; - a ^ {-} 1 ) . $$
Charlier polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Charlier_polynomials&oldid=13248