|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216001.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216002.png" />''
| + | <!-- |
| + | c0216001.png |
| + | $#A+1 = 55 n = 0 |
| + | $#C+1 = 55 : ~/encyclopedia/old_files/data/C021/C.0201600 Character of an associative algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A non-zero homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216003.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216004.png" />. A character of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216005.png" /> is sometimes also called a multiplicative functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216006.png" />. Every character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216007.png" /> is surjective and has the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216008.png" />. The kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216009.png" /> is a maximal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160010.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160011.png" /> is a finitely generated commutative algebra and if the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160012.png" /> is algebraically closed, then any maximal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160013.png" /> is the kernel of a unique character, so that the correspondence between characters and maximal ideals is bijective. The collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160014.png" /> of all characters of a commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160015.png" />, its so-called maximal spectrum, has the natural structure of an [[Affine variety|affine variety]]. Every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160016.png" /> determines a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160017.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160018.png" />, given by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160019.png" />, and the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160020.png" /> form the algebra of regular functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160021.png" />. Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160022.png" /> is an affine variety and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160023.png" /> is the algebra of regular functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160024.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160025.png" /> can be identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160026.png" />: To every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160027.png" /> corresponds the character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160028.png" /> defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160029.png" />.
| + | '' $ A $ |
| + | over a field $ k $'' |
| | | |
− | The characters of a commutative Banach algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160030.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160031.png" /> have similar properties. Every character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160032.png" /> is continuous and has norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160033.png" />. Every maximal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160034.png" /> is the kernel of a unique character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160035.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160036.png" /> of all characters, regarded as a subset of the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160037.png" /> endowed with the weak topology, is compact and is called the spectrum of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160038.png" />, and there is a natural homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160039.png" /> into the algebra of continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160040.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160041.png" /> is the algebra of all complex-valued continuous functions on a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160042.png" />, equipped with the norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160043.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160044.png" /> can be identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160045.png" />: To every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160046.png" /> corresponds the character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160047.png" /> defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160049.png" />. A character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160050.png" /> of a symmetric commutative Banach algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160051.png" /> is called Hermitian if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160052.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160053.png" />); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160054.png" /> is Hermitian if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160055.png" /> is a symmetric maximal ideal. | + | A non-zero homomorphism of $ A $ |
| + | into $ k $. |
| + | A character of the algebra $ A $ |
| + | is sometimes also called a multiplicative functional on $ A $. |
| + | Every character $ \chi : A \rightarrow k $ |
| + | is surjective and has the property $ \chi ( 1) = 1 $. |
| + | The kernel $ \mathop{\rm Ker} \chi $ |
| + | is a maximal ideal in $ A $. |
| + | |
| + | If $ A $ |
| + | is a finitely generated commutative algebra and if the field $ k $ |
| + | is algebraically closed, then any maximal ideal in $ A $ |
| + | is the kernel of a unique character, so that the correspondence between characters and maximal ideals is bijective. The collection $ \mathop{\rm Specm} A $ |
| + | of all characters of a commutative algebra $ A $, |
| + | its so-called maximal spectrum, has the natural structure of an [[Affine variety|affine variety]]. Every element $ a \in A $ |
| + | determines a function $ \widetilde{a} $ |
| + | on $ \mathop{\rm Specm} A $, |
| + | given by the formula $ \widetilde{a} ( \chi ) = \chi ( a) $, |
| + | and the functions $ \widetilde{a} $ |
| + | form the algebra of regular functions on $ \mathop{\rm Specm} A $. |
| + | Conversely, if $ X $ |
| + | is an affine variety and $ A $ |
| + | is the algebra of regular functions on $ X $, |
| + | then $ \mathop{\rm Specm} A $ |
| + | can be identified with $ X $: |
| + | To every point $ x \in X $ |
| + | corresponds the character $ \chi _ {x} $ |
| + | defined by the formula $ \chi _ {x} ( a) = a ( x) $. |
| + | |
| + | The characters of a commutative Banach algebra $ A $ |
| + | over $ \mathbf C $ |
| + | have similar properties. Every character $ \chi : A \rightarrow \mathbf C $ |
| + | is continuous and has norm $ \| \chi \| \leq 1 $. |
| + | Every maximal ideal in $ A $ |
| + | is the kernel of a unique character of $ A $. |
| + | The set $ \Phi ( A) $ |
| + | of all characters, regarded as a subset of the unit ball in $ A ^ {*} $ |
| + | endowed with the weak topology, is compact and is called the spectrum of the algebra $ A $, |
| + | and there is a natural homomorphism of $ A $ |
| + | into the algebra of continuous functions on $ \Phi ( A) $. |
| + | For example, if $ A $ |
| + | is the algebra of all complex-valued continuous functions on a compact set $ X $, |
| + | equipped with the norm $ \| f \| = \max _ {X} | f | $, |
| + | then $ \Phi ( A) $ |
| + | can be identified with $ X $: |
| + | To every element $ x \in X $ |
| + | corresponds the character $ \chi _ {x} $ |
| + | defined by the formula $ \chi _ {x} ( f) = f ( x) $, |
| + | $ f \in A $. |
| + | A character $ \chi $ |
| + | of a symmetric commutative Banach algebra $ A $ |
| + | is called Hermitian if $ \chi ( a ^ {*} ) = \chi ( a) $( |
| + | $ a \in A $); |
| + | $ \chi $ |
| + | is Hermitian if and only if $ \mathop{\rm Ker} \chi $ |
| + | is a symmetric maximal ideal. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)</TD></TR></table> |
$ A $
over a field $ k $
A non-zero homomorphism of $ A $
into $ k $.
A character of the algebra $ A $
is sometimes also called a multiplicative functional on $ A $.
Every character $ \chi : A \rightarrow k $
is surjective and has the property $ \chi ( 1) = 1 $.
The kernel $ \mathop{\rm Ker} \chi $
is a maximal ideal in $ A $.
If $ A $
is a finitely generated commutative algebra and if the field $ k $
is algebraically closed, then any maximal ideal in $ A $
is the kernel of a unique character, so that the correspondence between characters and maximal ideals is bijective. The collection $ \mathop{\rm Specm} A $
of all characters of a commutative algebra $ A $,
its so-called maximal spectrum, has the natural structure of an affine variety. Every element $ a \in A $
determines a function $ \widetilde{a} $
on $ \mathop{\rm Specm} A $,
given by the formula $ \widetilde{a} ( \chi ) = \chi ( a) $,
and the functions $ \widetilde{a} $
form the algebra of regular functions on $ \mathop{\rm Specm} A $.
Conversely, if $ X $
is an affine variety and $ A $
is the algebra of regular functions on $ X $,
then $ \mathop{\rm Specm} A $
can be identified with $ X $:
To every point $ x \in X $
corresponds the character $ \chi _ {x} $
defined by the formula $ \chi _ {x} ( a) = a ( x) $.
The characters of a commutative Banach algebra $ A $
over $ \mathbf C $
have similar properties. Every character $ \chi : A \rightarrow \mathbf C $
is continuous and has norm $ \| \chi \| \leq 1 $.
Every maximal ideal in $ A $
is the kernel of a unique character of $ A $.
The set $ \Phi ( A) $
of all characters, regarded as a subset of the unit ball in $ A ^ {*} $
endowed with the weak topology, is compact and is called the spectrum of the algebra $ A $,
and there is a natural homomorphism of $ A $
into the algebra of continuous functions on $ \Phi ( A) $.
For example, if $ A $
is the algebra of all complex-valued continuous functions on a compact set $ X $,
equipped with the norm $ \| f \| = \max _ {X} | f | $,
then $ \Phi ( A) $
can be identified with $ X $:
To every element $ x \in X $
corresponds the character $ \chi _ {x} $
defined by the formula $ \chi _ {x} ( f) = f ( x) $,
$ f \in A $.
A character $ \chi $
of a symmetric commutative Banach algebra $ A $
is called Hermitian if $ \chi ( a ^ {*} ) = \chi ( a) $(
$ a \in A $);
$ \chi $
is Hermitian if and only if $ \mathop{\rm Ker} \chi $
is a symmetric maximal ideal.
References
[1] | M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian) |