Namespaces
Variants
Actions

Difference between revisions of "Chaplygin theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0215001.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/C021/C.0201500 Chaplygin theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''on differential inequalities''
 
''on differential inequalities''
  
 
If in the [[Differential inequality|differential inequality]]
 
If in the [[Differential inequality|differential inequality]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215001.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
L [ y]  \equiv  y  ^ {(} m) + a _ {1} ( x) y ^ {( m - 1 ) }
 +
+ \dots + a _ {m} ( x) y  > f ( x)
 +
$$
  
all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215002.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215003.png" /> are summable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215004.png" />, then there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215005.png" />, independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215006.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215007.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215008.png" />, where
+
all the $  a _ {i} $
 +
and $  f $
 +
are summable on $  [ x _ {0} , x _ {1} ] $,  
 +
then there exists an $  x  ^ {*} \in ( x _ {0} , x _ {1} ] $,  
 +
independent of $  f $,  
 +
such that $  y ( x) > z ( x) $,  
 +
$  x _ {0} < x \leq  x  ^ {*} $,  
 +
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c0215009.png" /></td> </tr></table>
+
$$
 +
L [ z]  = f ( x),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150010.png" /></td> </tr></table>
+
$$
 +
z ( x _ {0} )  = y ( x _ {0} ) \dots z ^ {( n - 1 )
 +
} ( x _ {0} )  = y ^ {( n - 1 ) } ( x _ {0} ) .
 +
$$
  
 
Here
 
Here
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150011.png" /></td> </tr></table>
+
$$
 +
x  ^ {*}  = \max \{ {x \in [ x _ {0} , x _ {1} ] }
 +
: {\forall \xi \in [ x _ {0} , x ] ,\
 +
\forall s \in [ \xi , x ] \Rightarrow G ( s ; \xi ) \geq  0 } \} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150012.png" /> is the corresponding Cauchy function, i.e. the solution of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150014.png" />, that satisfies the initial conditions
+
where $  G ( x ;  \xi ) $
 +
is the corresponding Cauchy function, i.e. the solution of the equation $  L [ G] = 0 $,  
 +
$  \xi \leq  x \leq  x _ {1} $,  
 +
that satisfies the initial conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150015.png" /></td> </tr></table>
+
$$
 +
\left . G \right | _ {x = \xi }  = \dots = \
 +
\left . G _ {x} ^ {( m - 2 ) } \right | _ {x = \xi }  = 0 ,\ \
 +
\left . G _ {x} ^ {( m - 1 ) } \right | _ {x = \xi }  = 1 .
 +
$$
  
Thus, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150016.png" />, and also for the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150017.png" />, one obtains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150018.png" />, while for the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150019.png" /> one obtains
+
Thus, for $  m = 1 $,  
 +
and also for the inequality $  y  ^ {\prime\prime} - y > f ( x) $,  
 +
one obtains $  x  ^ {*} = x _ {1} $,  
 +
while for the inequality $  y  ^ {\prime\prime} + y > f ( x) $
 +
one obtains
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150020.png" /></td> </tr></table>
+
$$
 +
x  ^ {*}  = \min \{ x _ {1} , x _ {0} + \pi \} .
 +
$$
  
Analogous statements hold: for weak inequalities; for the comparison of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150021.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150023.png" />; for initial conditions of the form
+
Analogous statements hold: for weak inequalities; for the comparison of $  y  ^ {(} i) ( x) $
 +
with $  z  ^ {(} i) ( x) $,  
 +
$  i = 1 \dots m - 1 $;  
 +
for initial conditions of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150024.png" /></td> </tr></table>
+
$$
 +
y ( x _ {0} )  \geq  z ( x _ {0} ) \dots y ^ {( n - 1 ) }
 +
( x _ {0} )  \geq  z ^ {( n - 1 ) } ( x _ {0} ) ;
 +
$$
  
and for solutions of the inequality (*) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021500/c02150025.png" />.
+
and for solutions of the inequality (*) with $  x < x _ {0} $.
  
 
The theorem was obtained by S.A. Chaplygin in 1919.
 
The theorem was obtained by S.A. Chaplygin in 1919.
Line 35: Line 85:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Ya.D. Mamedov,  S. Ashirov,  S. Atdaev,  "Theorems on inequalities" , Ashkhabad  (1980)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  Ya.D. Mamedov,  S. Ashirov,  S. Atdaev,  "Theorems on inequalities" , Ashkhabad  (1980)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 16:43, 4 June 2020


on differential inequalities

If in the differential inequality

$$ \tag{* } L [ y] \equiv y ^ {(} m) + a _ {1} ( x) y ^ {( m - 1 ) } + \dots + a _ {m} ( x) y > f ( x) $$

all the $ a _ {i} $ and $ f $ are summable on $ [ x _ {0} , x _ {1} ] $, then there exists an $ x ^ {*} \in ( x _ {0} , x _ {1} ] $, independent of $ f $, such that $ y ( x) > z ( x) $, $ x _ {0} < x \leq x ^ {*} $, where

$$ L [ z] = f ( x), $$

$$ z ( x _ {0} ) = y ( x _ {0} ) \dots z ^ {( n - 1 ) } ( x _ {0} ) = y ^ {( n - 1 ) } ( x _ {0} ) . $$

Here

$$ x ^ {*} = \max \{ {x \in [ x _ {0} , x _ {1} ] } : {\forall \xi \in [ x _ {0} , x ] ,\ \forall s \in [ \xi , x ] \Rightarrow G ( s ; \xi ) \geq 0 } \} , $$

where $ G ( x ; \xi ) $ is the corresponding Cauchy function, i.e. the solution of the equation $ L [ G] = 0 $, $ \xi \leq x \leq x _ {1} $, that satisfies the initial conditions

$$ \left . G \right | _ {x = \xi } = \dots = \ \left . G _ {x} ^ {( m - 2 ) } \right | _ {x = \xi } = 0 ,\ \ \left . G _ {x} ^ {( m - 1 ) } \right | _ {x = \xi } = 1 . $$

Thus, for $ m = 1 $, and also for the inequality $ y ^ {\prime\prime} - y > f ( x) $, one obtains $ x ^ {*} = x _ {1} $, while for the inequality $ y ^ {\prime\prime} + y > f ( x) $ one obtains

$$ x ^ {*} = \min \{ x _ {1} , x _ {0} + \pi \} . $$

Analogous statements hold: for weak inequalities; for the comparison of $ y ^ {(} i) ( x) $ with $ z ^ {(} i) ( x) $, $ i = 1 \dots m - 1 $; for initial conditions of the form

$$ y ( x _ {0} ) \geq z ( x _ {0} ) \dots y ^ {( n - 1 ) } ( x _ {0} ) \geq z ^ {( n - 1 ) } ( x _ {0} ) ; $$

and for solutions of the inequality (*) with $ x < x _ {0} $.

The theorem was obtained by S.A. Chaplygin in 1919.

See also the references in Differential inequality.

References

[1] Ya.D. Mamedov, S. Ashirov, S. Atdaev, "Theorems on inequalities" , Ashkhabad (1980) (In Russian)

Comments

On page 123 of [a1] Chaplygin's theorem is formulated as a problem.

References

[a1] I.G. Petrovskii, "Ordinary differential equations" , Prentice-Hall (1966) (Translated from Russian)
How to Cite This Entry:
Chaplygin theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chaplygin_theorem&oldid=18838
This article was adapted from an original article by A.D. Myshkis (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article