Difference between revisions of "Chaplygin theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | c0215001.png | ||
| + | $#A+1 = 25 n = 0 | ||
| + | $#C+1 = 25 : ~/encyclopedia/old_files/data/C021/C.0201500 Chaplygin theorem | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''on differential inequalities'' | ''on differential inequalities'' | ||
If in the [[Differential inequality|differential inequality]] | If in the [[Differential inequality|differential inequality]] | ||
| − | + | $$ \tag{* } | |
| + | L [ y] \equiv y ^ {(} m) + a _ {1} ( x) y ^ {( m - 1 ) } | ||
| + | + \dots + a _ {m} ( x) y > f ( x) | ||
| + | $$ | ||
| − | all the | + | all the $ a _ {i} $ |
| + | and $ f $ | ||
| + | are summable on $ [ x _ {0} , x _ {1} ] $, | ||
| + | then there exists an $ x ^ {*} \in ( x _ {0} , x _ {1} ] $, | ||
| + | independent of $ f $, | ||
| + | such that $ y ( x) > z ( x) $, | ||
| + | $ x _ {0} < x \leq x ^ {*} $, | ||
| + | where | ||
| − | + | $$ | |
| + | L [ z] = f ( x), | ||
| + | $$ | ||
| − | + | $$ | |
| + | z ( x _ {0} ) = y ( x _ {0} ) \dots z ^ {( n - 1 ) | ||
| + | } ( x _ {0} ) = y ^ {( n - 1 ) } ( x _ {0} ) . | ||
| + | $$ | ||
Here | Here | ||
| − | + | $$ | |
| + | x ^ {*} = \max \{ {x \in [ x _ {0} , x _ {1} ] } | ||
| + | : {\forall \xi \in [ x _ {0} , x ] ,\ | ||
| + | \forall s \in [ \xi , x ] \Rightarrow G ( s ; \xi ) \geq 0 } \} , | ||
| + | $$ | ||
| − | where | + | where $ G ( x ; \xi ) $ |
| + | is the corresponding Cauchy function, i.e. the solution of the equation $ L [ G] = 0 $, | ||
| + | $ \xi \leq x \leq x _ {1} $, | ||
| + | that satisfies the initial conditions | ||
| − | + | $$ | |
| + | \left . G \right | _ {x = \xi } = \dots = \ | ||
| + | \left . G _ {x} ^ {( m - 2 ) } \right | _ {x = \xi } = 0 ,\ \ | ||
| + | \left . G _ {x} ^ {( m - 1 ) } \right | _ {x = \xi } = 1 . | ||
| + | $$ | ||
| − | Thus, for | + | Thus, for $ m = 1 $, |
| + | and also for the inequality $ y ^ {\prime\prime} - y > f ( x) $, | ||
| + | one obtains $ x ^ {*} = x _ {1} $, | ||
| + | while for the inequality $ y ^ {\prime\prime} + y > f ( x) $ | ||
| + | one obtains | ||
| − | + | $$ | |
| + | x ^ {*} = \min \{ x _ {1} , x _ {0} + \pi \} . | ||
| + | $$ | ||
| − | Analogous statements hold: for weak inequalities; for the comparison of | + | Analogous statements hold: for weak inequalities; for the comparison of $ y ^ {(} i) ( x) $ |
| + | with $ z ^ {(} i) ( x) $, | ||
| + | $ i = 1 \dots m - 1 $; | ||
| + | for initial conditions of the form | ||
| − | + | $$ | |
| + | y ( x _ {0} ) \geq z ( x _ {0} ) \dots y ^ {( n - 1 ) } | ||
| + | ( x _ {0} ) \geq z ^ {( n - 1 ) } ( x _ {0} ) ; | ||
| + | $$ | ||
| − | and for solutions of the inequality (*) with < | + | and for solutions of the inequality (*) with $ x < x _ {0} $. |
The theorem was obtained by S.A. Chaplygin in 1919. | The theorem was obtained by S.A. Chaplygin in 1919. | ||
| Line 35: | Line 85: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Ya.D. Mamedov, S. Ashirov, S. Atdaev, "Theorems on inequalities" , Ashkhabad (1980) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Ya.D. Mamedov, S. Ashirov, S. Atdaev, "Theorems on inequalities" , Ashkhabad (1980) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Latest revision as of 16:43, 4 June 2020
on differential inequalities
If in the differential inequality
$$ \tag{* } L [ y] \equiv y ^ {(} m) + a _ {1} ( x) y ^ {( m - 1 ) } + \dots + a _ {m} ( x) y > f ( x) $$
all the $ a _ {i} $ and $ f $ are summable on $ [ x _ {0} , x _ {1} ] $, then there exists an $ x ^ {*} \in ( x _ {0} , x _ {1} ] $, independent of $ f $, such that $ y ( x) > z ( x) $, $ x _ {0} < x \leq x ^ {*} $, where
$$ L [ z] = f ( x), $$
$$ z ( x _ {0} ) = y ( x _ {0} ) \dots z ^ {( n - 1 ) } ( x _ {0} ) = y ^ {( n - 1 ) } ( x _ {0} ) . $$
Here
$$ x ^ {*} = \max \{ {x \in [ x _ {0} , x _ {1} ] } : {\forall \xi \in [ x _ {0} , x ] ,\ \forall s \in [ \xi , x ] \Rightarrow G ( s ; \xi ) \geq 0 } \} , $$
where $ G ( x ; \xi ) $ is the corresponding Cauchy function, i.e. the solution of the equation $ L [ G] = 0 $, $ \xi \leq x \leq x _ {1} $, that satisfies the initial conditions
$$ \left . G \right | _ {x = \xi } = \dots = \ \left . G _ {x} ^ {( m - 2 ) } \right | _ {x = \xi } = 0 ,\ \ \left . G _ {x} ^ {( m - 1 ) } \right | _ {x = \xi } = 1 . $$
Thus, for $ m = 1 $, and also for the inequality $ y ^ {\prime\prime} - y > f ( x) $, one obtains $ x ^ {*} = x _ {1} $, while for the inequality $ y ^ {\prime\prime} + y > f ( x) $ one obtains
$$ x ^ {*} = \min \{ x _ {1} , x _ {0} + \pi \} . $$
Analogous statements hold: for weak inequalities; for the comparison of $ y ^ {(} i) ( x) $ with $ z ^ {(} i) ( x) $, $ i = 1 \dots m - 1 $; for initial conditions of the form
$$ y ( x _ {0} ) \geq z ( x _ {0} ) \dots y ^ {( n - 1 ) } ( x _ {0} ) \geq z ^ {( n - 1 ) } ( x _ {0} ) ; $$
and for solutions of the inequality (*) with $ x < x _ {0} $.
The theorem was obtained by S.A. Chaplygin in 1919.
See also the references in Differential inequality.
References
| [1] | Ya.D. Mamedov, S. Ashirov, S. Atdaev, "Theorems on inequalities" , Ashkhabad (1980) (In Russian) |
Comments
On page 123 of [a1] Chaplygin's theorem is formulated as a problem.
References
| [a1] | I.G. Petrovskii, "Ordinary differential equations" , Prentice-Hall (1966) (Translated from Russian) |
Chaplygin theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Chaplygin_theorem&oldid=18838