|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | A form in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210501.png" /> variables, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210502.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210503.png" /> a closed algebraic subvariety of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210504.png" />-dimensional projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210505.png" />, which is determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210506.png" /> uniquely up to a constant factor and itself uniquely determines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210507.png" />. The exact definition is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210508.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c0210509.png" />-dimensional projective space of all hyperplanes in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105010.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105011.png" /> be the subset of the variety
| + | <!-- |
| + | c0210501.png |
| + | $#A+1 = 105 n = 0 |
| + | $#C+1 = 105 : ~/encyclopedia/old_files/data/C021/C.0201050 Cayley form |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105012.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105013.png" /> factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105014.png" />) consisting of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105015.png" />-tuples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105016.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105017.png" /> is a point in the intersection of the hyperplanes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105018.png" /> and | + | A form in $ ( n + 1) ( N + 1) $ |
| + | variables, where $ n = \mathop{\rm dim} X $, |
| + | with $ X $ |
| + | a closed algebraic subvariety of an $ N $- |
| + | dimensional projective space $ \mathbf P ^ {N} $, |
| + | which is determined by $ X $ |
| + | uniquely up to a constant factor and itself uniquely determines $ X $. |
| + | The exact definition is as follows. Let $ \widetilde{\mathbf P} {} ^ {N} $ |
| + | be the $ N $- |
| + | dimensional projective space of all hyperplanes in $ \mathbf P ^ {N} $, |
| + | and let $ \Gamma $ |
| + | be the subset of the variety |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105019.png" /></td> </tr></table>
| + | $$ |
| + | {\widetilde{\mathbf P} } {} ^ {N} |
| + | \times \dots \times |
| + | {\widetilde{\mathbf P} } {} ^ {N} |
| + | \times X |
| + | $$ |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105020.png" /> factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105021.png" /> each time) is the natural projection. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105022.png" /> is an irreducible subvariety of codimension 1 in | + | ( $ n + 1 $ |
| + | factors $ \widetilde{\mathbf P} {} ^ {N} $) |
| + | consisting of all $ ( n + 2) $- |
| + | tuples $ ( \pi _ {1} \dots \pi _ {n + 1 } , x) $, |
| + | where $ x \in X $ |
| + | is a point in the intersection of the hyperplanes $ \pi _ {1} \dots \pi _ {n + 1 } $ |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105023.png" /></td> </tr></table>
| + | $$ |
| + | \phi : \widetilde{\mathbf P} {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N} |
| + | \times X \rightarrow \ |
| + | {\widetilde{\mathbf P} } {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N} |
| + | $$ |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105024.png" /> factors) and so <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105025.png" /> is the zero variety for some form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105026.png" /> on | + | ( $ n + 1 $ |
| + | factors $ \widetilde{\mathbf P} {} ^ {N} $ |
| + | each time) is the natural projection. Then $ \phi ( \Gamma ) $ |
| + | is an irreducible subvariety of codimension 1 in |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105027.png" /></td> </tr></table>
| + | $$ |
| + | {\widetilde{\mathbf P} } {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N} |
| + | $$ |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105028.png" /> factors). | + | ( $ n + 1 $ |
| + | factors) and so $ \phi ( \Gamma ) $ |
| + | is the zero variety for some form $ F _ {X} $ |
| + | on |
| | | |
− | It may always be assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105029.png" /> has no multiple factors, and this condition defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105030.png" /> uniquely up to multiplication by a constant, given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105031.png" />. Conversely, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105032.png" /> uniquely determines the set of all possible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105033.png" />-tuples of hyperplanes in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105034.png" /> that intersect at points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105035.png" />, and so <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105036.png" /> uniquely determines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105037.png" />. The form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105038.png" /> is called the Cayley form of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105039.png" />.
| + | $$ |
| + | {\widetilde{\mathbf P} } {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N} |
| + | $$ |
| | | |
− | The Cayley form is also frequently known as the Chow form, or the associated form, of the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105040.png" />. The idea of defining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105041.png" /> by the complex of linear subspaces of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105042.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105043.png" /> that intersect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105044.png" /> goes back to A. Cayley [[#References|[5]]], who applied it to the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105046.png" />. The coefficients of the Cayley form are known as the Chow coordinates of the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105047.png" />.
| + | ( $ n + 1 $ |
| + | factors). |
| | | |
− | The Cayley form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105048.png" /> is homogeneous in each of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105049.png" /> coordinate systems of the space | + | It may always be assumed that $ F _ {X} $ |
| + | has no multiple factors, and this condition defines $ F _ {X} $ |
| + | uniquely up to multiplication by a constant, given $ X $. |
| + | Conversely, $ F _ {X} $ |
| + | uniquely determines the set of all possible $ ( n + 1) $- |
| + | tuples of hyperplanes in $ \mathbf P ^ {N} $ |
| + | that intersect at points of $ X $, |
| + | and so $ F _ {X} $ |
| + | uniquely determines $ X $. |
| + | The form $ F _ {X} $ |
| + | is called the Cayley form of $ X $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105050.png" /></td> </tr></table>
| + | The Cayley form is also frequently known as the Chow form, or the associated form, of the variety $ X $. |
| + | The idea of defining $ X $ |
| + | by the complex of linear subspaces of dimension $ N - n - 1 $ |
| + | in $ \mathbf P ^ {N} $ |
| + | that intersect $ X $ |
| + | goes back to A. Cayley [[#References|[5]]], who applied it to the case $ n = 1 $, |
| + | $ N = 3 $. |
| + | The coefficients of the Cayley form are known as the Chow coordinates of the variety $ X $. |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105051.png" /> factors) (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105052.png" />-th coordinate system is the coordinate system of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105053.png" />-th factor in this space). The form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105054.png" /> has the same degree of homogeneity with respect to each system; this common degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105055.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105056.png" /> and is called the degree of the subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105057.png" />. It admits a geometrical interpretation: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105058.png" /> is the maximum number of points of intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105059.png" /> with all possible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105060.png" />-dimensional linear spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105061.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105062.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105063.png" /> is a finite set (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105064.png" /> is the number of points in the intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105065.png" /> with a "general" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105066.png" />-dimensional linear subspace).
| + | The Cayley form $ F _ {X} $ |
| + | is homogeneous in each of the $ n + 1 $ |
| + | coordinate systems of the space |
| | | |
− | The set of all forms (up to multiplication by a non-zero constant) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105067.png" /> groups of variables consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105068.png" /> variables and having degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105069.png" /> in each group, forms a projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105070.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105071.png" />. The Cayley form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105072.png" /> may be identified with a point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105073.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105074.png" /> of all points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105075.png" /> which are Cayley forms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105076.png" />-dimensional closed subvarieties of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105077.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105078.png" /> is a quasi-projective variety; it parametrizes the family of all such subvarieties in such a way that the family is algebraic relative to the parametrization. In general, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105079.png" /> need not be closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105080.png" />.
| + | $$ |
| + | {\widetilde{\mathbf P} } {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N} |
| + | $$ |
| | | |
− | The construction of the Cayley form carries over in a natural way to closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105081.png" />-dimensional cycles in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105082.png" />, i.e. to formal linear combinations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105083.png" /> of closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105084.png" />-dimensional subvarieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105085.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105086.png" /> with integer coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105087.png" />. In fact, one puts | + | ( $ n + 1 $ |
| + | factors) (the $ i $- |
| + | th coordinate system is the coordinate system of the $ i $- |
| + | th factor in this space). The form $ F _ {X} $ |
| + | has the same degree of homogeneity with respect to each system; this common degree $ d $ |
| + | is denoted by $ \mathop{\rm deg} X $ |
| + | and is called the degree of the subvariety $ X $. |
| + | It admits a geometrical interpretation: $ d $ |
| + | is the maximum number of points of intersection of $ X $ |
| + | with all possible $ ( N - n) $- |
| + | dimensional linear spaces $ L $ |
| + | in $ \mathbf P ^ {N} $ |
| + | such that $ X \cap L $ |
| + | is a finite set (i.e. $ d $ |
| + | is the number of points in the intersection of $ X $ |
| + | with a "general" $ ( N - n) $- |
| + | dimensional linear subspace). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105088.png" /></td> </tr></table>
| + | The set of all forms (up to multiplication by a non-zero constant) in $ n + 1 $ |
| + | groups of variables consisting of $ N + 1 $ |
| + | variables and having degree $ d $ |
| + | in each group, forms a projective space $ \mathbf P ^ {\nu _ {N, n, d } } $ |
| + | of dimension $ \nu _ {N, n, d } $. |
| + | The Cayley form $ F _ {X} $ |
| + | may be identified with a point of $ \mathbf P ^ {\nu _ {N, n, d } } $. |
| + | The set $ C _ {N, n, d } $ |
| + | of all points in $ \mathbf P ^ {\nu _ {N, n, d } } $ |
| + | which are Cayley forms of $ n $- |
| + | dimensional closed subvarieties of degree $ d $ |
| + | in $ \mathbf P ^ {N} $ |
| + | is a quasi-projective variety; it parametrizes the family of all such subvarieties in such a way that the family is algebraic relative to the parametrization. In general, $ C _ {N, n, d } $ |
| + | need not be closed in $ \mathbf P ^ {\nu _ {N, n, d } } $. |
| | | |
− | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105089.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105090.png" /> of all Cayley forms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105091.png" />-dimensional cycles of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105092.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105093.png" /> is closed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105094.png" />.
| + | The construction of the Cayley form carries over in a natural way to closed $ n $- |
| + | dimensional cycles in $ \mathbf P ^ {N} $, |
| + | i.e. to formal linear combinations $ m _ {1} X _ {1} + \dots + m _ {s} X _ {s} $ |
| + | of closed $ n $- |
| + | dimensional subvarieties $ X _ {1} \dots X _ {s} $ |
| + | in $ \mathbf P ^ {N} $ |
| + | with integer coefficients $ m _ {i} > 0 $. |
| + | In fact, one puts |
| | | |
− | The investigation of Cayley forms and the properties of the varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105095.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105096.png" /> constitute an important aspect in the problem of classifying subvarieties and cycles in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105097.png" />. The first stage in this classification is to study the decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105098.png" /> into irreducible components. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c02105099.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c021050100.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c021050101.png" /> (curves of degree 2 in three-dimensional space), the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c021050102.png" /> decomposes into two irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c021050103.png" />-dimensional components. The first corresponds to planar curves of the second order, the second to pairs of straight lines. The birational classification of the varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c021050104.png" /> is an important problem (in all known examples these varieties are rational).
| + | $$ |
| + | \mathop{\rm deg} X = \ |
| + | \sum _ {i = 1 } ^ { s } |
| + | m _ {i} \mathop{\rm deg} X _ {i} $$ |
| | | |
− | ====References==== | + | and $ F _ {X} = F _ {X _ {1} } ^ {m _ {1} } \dots F _ {X _ {s} } ^ {m _ {s} } $. |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , '''2''' , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1955)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W.-L. Chow, B.L. van der Waerden, "Zur algebraische Geometrie IX" ''Math. Ann.'' , '''113''' (1937) pp. 692–704</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Cayley, "On a new analytical representation of curves in space" , ''Collected mathematical papers'' , '''4''' , Cambridge Univ. Press (1891) pp. 446–455 (Quart. J. Pure Appl. Math. 3 (1860), 225–236)</TD></TR></table>
| + | The set $ {C _ {N, n, d } } bar $ |
| + | of all Cayley forms of $ n $- |
| + | dimensional cycles of degree $ d $ |
| + | in $ \mathbf P ^ {N} $ |
| + | is closed in $ \mathbf P ^ {\nu _ {N, n, d } } $. |
| | | |
| + | The investigation of Cayley forms and the properties of the varieties $ C _ {N, n, d } $ |
| + | and $ {C _ {N, n, d } } bar $ |
| + | constitute an important aspect in the problem of classifying subvarieties and cycles in $ \mathbf P ^ {n} $. |
| + | The first stage in this classification is to study the decomposition of $ {C _ {N, n, d } } bar $ |
| + | into irreducible components. For example, if $ N = 3 $, |
| + | $ n = 1 $, |
| + | $ d = 2 $( |
| + | curves of degree 2 in three-dimensional space), the variety $ {C _ {3, 1, 2 } } bar $ |
| + | decomposes into two irreducible $ 8 $- |
| + | dimensional components. The first corresponds to planar curves of the second order, the second to pairs of straight lines. The birational classification of the varieties $ C _ {N, n, d } $ |
| + | is an important problem (in all known examples these varieties are rational). |
| | | |
| + | ====References==== |
| + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , '''2''' , Cambridge Univ. Press (1952) {{MR|0048065}} {{ZBL|0048.14502}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1955) {{MR|0072531}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> W.-L. Chow, B.L. van der Waerden, "Zur algebraische Geometrie IX" ''Math. Ann.'' , '''113''' (1937) pp. 692–704 {{MR|}} {{ZBL|0016.04004}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Cayley, "On a new analytical representation of curves in space" , ''Collected mathematical papers'' , '''4''' , Cambridge Univ. Press (1891) pp. 446–455 (Quart. J. Pure Appl. Math. 3 (1860), 225–236)</TD></TR></table> |
| | | |
| ====Comments==== | | ====Comments==== |
− | The varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021050/c021050105.png" /> are special cases of Hilbert schemes (cf. [[Hilbert scheme|Hilbert scheme]]). | + | The varieties $ C _ {N,n,d} $ |
| + | are special cases of Hilbert schemes (cf. [[Hilbert scheme|Hilbert scheme]]). |
A form in $ ( n + 1) ( N + 1) $
variables, where $ n = \mathop{\rm dim} X $,
with $ X $
a closed algebraic subvariety of an $ N $-
dimensional projective space $ \mathbf P ^ {N} $,
which is determined by $ X $
uniquely up to a constant factor and itself uniquely determines $ X $.
The exact definition is as follows. Let $ \widetilde{\mathbf P} {} ^ {N} $
be the $ N $-
dimensional projective space of all hyperplanes in $ \mathbf P ^ {N} $,
and let $ \Gamma $
be the subset of the variety
$$
{\widetilde{\mathbf P} } {} ^ {N}
\times \dots \times
{\widetilde{\mathbf P} } {} ^ {N}
\times X
$$
( $ n + 1 $
factors $ \widetilde{\mathbf P} {} ^ {N} $)
consisting of all $ ( n + 2) $-
tuples $ ( \pi _ {1} \dots \pi _ {n + 1 } , x) $,
where $ x \in X $
is a point in the intersection of the hyperplanes $ \pi _ {1} \dots \pi _ {n + 1 } $
and
$$
\phi : \widetilde{\mathbf P} {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N}
\times X \rightarrow \
{\widetilde{\mathbf P} } {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N}
$$
( $ n + 1 $
factors $ \widetilde{\mathbf P} {} ^ {N} $
each time) is the natural projection. Then $ \phi ( \Gamma ) $
is an irreducible subvariety of codimension 1 in
$$
{\widetilde{\mathbf P} } {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N}
$$
( $ n + 1 $
factors) and so $ \phi ( \Gamma ) $
is the zero variety for some form $ F _ {X} $
on
$$
{\widetilde{\mathbf P} } {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N}
$$
( $ n + 1 $
factors).
It may always be assumed that $ F _ {X} $
has no multiple factors, and this condition defines $ F _ {X} $
uniquely up to multiplication by a constant, given $ X $.
Conversely, $ F _ {X} $
uniquely determines the set of all possible $ ( n + 1) $-
tuples of hyperplanes in $ \mathbf P ^ {N} $
that intersect at points of $ X $,
and so $ F _ {X} $
uniquely determines $ X $.
The form $ F _ {X} $
is called the Cayley form of $ X $.
The Cayley form is also frequently known as the Chow form, or the associated form, of the variety $ X $.
The idea of defining $ X $
by the complex of linear subspaces of dimension $ N - n - 1 $
in $ \mathbf P ^ {N} $
that intersect $ X $
goes back to A. Cayley [5], who applied it to the case $ n = 1 $,
$ N = 3 $.
The coefficients of the Cayley form are known as the Chow coordinates of the variety $ X $.
The Cayley form $ F _ {X} $
is homogeneous in each of the $ n + 1 $
coordinate systems of the space
$$
{\widetilde{\mathbf P} } {} ^ {N} \times \dots \times {\widetilde{\mathbf P} } {} ^ {N}
$$
( $ n + 1 $
factors) (the $ i $-
th coordinate system is the coordinate system of the $ i $-
th factor in this space). The form $ F _ {X} $
has the same degree of homogeneity with respect to each system; this common degree $ d $
is denoted by $ \mathop{\rm deg} X $
and is called the degree of the subvariety $ X $.
It admits a geometrical interpretation: $ d $
is the maximum number of points of intersection of $ X $
with all possible $ ( N - n) $-
dimensional linear spaces $ L $
in $ \mathbf P ^ {N} $
such that $ X \cap L $
is a finite set (i.e. $ d $
is the number of points in the intersection of $ X $
with a "general" $ ( N - n) $-
dimensional linear subspace).
The set of all forms (up to multiplication by a non-zero constant) in $ n + 1 $
groups of variables consisting of $ N + 1 $
variables and having degree $ d $
in each group, forms a projective space $ \mathbf P ^ {\nu _ {N, n, d } } $
of dimension $ \nu _ {N, n, d } $.
The Cayley form $ F _ {X} $
may be identified with a point of $ \mathbf P ^ {\nu _ {N, n, d } } $.
The set $ C _ {N, n, d } $
of all points in $ \mathbf P ^ {\nu _ {N, n, d } } $
which are Cayley forms of $ n $-
dimensional closed subvarieties of degree $ d $
in $ \mathbf P ^ {N} $
is a quasi-projective variety; it parametrizes the family of all such subvarieties in such a way that the family is algebraic relative to the parametrization. In general, $ C _ {N, n, d } $
need not be closed in $ \mathbf P ^ {\nu _ {N, n, d } } $.
The construction of the Cayley form carries over in a natural way to closed $ n $-
dimensional cycles in $ \mathbf P ^ {N} $,
i.e. to formal linear combinations $ m _ {1} X _ {1} + \dots + m _ {s} X _ {s} $
of closed $ n $-
dimensional subvarieties $ X _ {1} \dots X _ {s} $
in $ \mathbf P ^ {N} $
with integer coefficients $ m _ {i} > 0 $.
In fact, one puts
$$
\mathop{\rm deg} X = \
\sum _ {i = 1 } ^ { s }
m _ {i} \mathop{\rm deg} X _ {i} $$
and $ F _ {X} = F _ {X _ {1} } ^ {m _ {1} } \dots F _ {X _ {s} } ^ {m _ {s} } $.
The set $ {C _ {N, n, d } } bar $
of all Cayley forms of $ n $-
dimensional cycles of degree $ d $
in $ \mathbf P ^ {N} $
is closed in $ \mathbf P ^ {\nu _ {N, n, d } } $.
The investigation of Cayley forms and the properties of the varieties $ C _ {N, n, d } $
and $ {C _ {N, n, d } } bar $
constitute an important aspect in the problem of classifying subvarieties and cycles in $ \mathbf P ^ {n} $.
The first stage in this classification is to study the decomposition of $ {C _ {N, n, d } } bar $
into irreducible components. For example, if $ N = 3 $,
$ n = 1 $,
$ d = 2 $(
curves of degree 2 in three-dimensional space), the variety $ {C _ {3, 1, 2 } } bar $
decomposes into two irreducible $ 8 $-
dimensional components. The first corresponds to planar curves of the second order, the second to pairs of straight lines. The birational classification of the varieties $ C _ {N, n, d } $
is an important problem (in all known examples these varieties are rational).
References
[1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
[2] | W.V.D. Hodge, D. Pedoe, "Methods of algebraic geometry" , 2 , Cambridge Univ. Press (1952) MR0048065 Zbl 0048.14502 |
[3] | P. Samuel, "Méthodes d'algèbre abstraite en géométrie algébrique" , Springer (1955) MR0072531 |
[4] | W.-L. Chow, B.L. van der Waerden, "Zur algebraische Geometrie IX" Math. Ann. , 113 (1937) pp. 692–704 Zbl 0016.04004 |
[5] | A. Cayley, "On a new analytical representation of curves in space" , Collected mathematical papers , 4 , Cambridge Univ. Press (1891) pp. 446–455 (Quart. J. Pure Appl. Math. 3 (1860), 225–236) |
The varieties $ C _ {N,n,d} $
are special cases of Hilbert schemes (cf. Hilbert scheme).