|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | An alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210401.png" />-dimensional algebra, derived from the algebra of generalized quaternions via the Cayley–Dickson process (cf. [[Quaternion|Quaternion]] and [[Alternative rings and algebras|Alternative rings and algebras]]). The latter starts out from a given algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210402.png" /> to construct a new algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210403.png" /> (of twice the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210404.png" />) and is a generalization of the doubling process (see [[Hypercomplex number|Hypercomplex number]]). Namely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210405.png" /> be an algebra with a unit 1 over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210406.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210407.png" /> be some non-zero element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210408.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c0210409.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104010.png" />-linear mapping which is an involution, and such that
| + | <!-- |
| + | c0210401.png |
| + | $#A+1 = 133 n = 0 |
| + | $#C+1 = 133 : ~/encyclopedia/old_files/data/C021/C.0201040 Cayley\ANDDickson algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104011.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | An alternative $ 8 $- |
| + | dimensional algebra, derived from the algebra of generalized quaternions via the Cayley–Dickson process (cf. [[Quaternion|Quaternion]] and [[Alternative rings and algebras|Alternative rings and algebras]]). The latter starts out from a given algebra $ A $ |
| + | to construct a new algebra $ A _ {1} $( |
| + | of twice the dimension of $ A $) |
| + | and is a generalization of the doubling process (see [[Hypercomplex number|Hypercomplex number]]). Namely, let $ A $ |
| + | be an algebra with a unit 1 over a field $ F $, |
| + | let $ \delta $ |
| + | be some non-zero element of $ F $, |
| + | and let $ x \rightarrow x ^ {*} $ |
| + | be an $ F $- |
| + | linear mapping which is an involution, and such that |
| + | |
| + | $$ |
| + | x + x ^ {*} = \ |
| + | \mathop{\rm tr} ( x) \in F,\ \ |
| + | xx ^ {*} = \ |
| + | n ( x) \in F. |
| + | $$ |
| | | |
| The formula | | The formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104012.png" /></td> </tr></table>
| + | $$ |
| + | ( a _ {1} , a _ {2} ) |
| + | ( b _ {1} , b _ {2} ) = \ |
| + | ( a _ {1} b _ {1} - |
| + | \delta b _ {2} a _ {2} ^ {*} ,\ |
| + | a _ {1} ^ {*} b _ {2} + |
| + | b _ {1} a _ {2} ) |
| + | $$ |
| | | |
− | now defines a multiplication operation on the direct sum of linear spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104013.png" />, relative to which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104014.png" /> is an algebra. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104015.png" /> may be imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104016.png" /> as a subalgebra: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104017.png" />, and the involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104018.png" /> extends to an involution in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104019.png" />: | + | now defines a multiplication operation on the direct sum of linear spaces $ A _ {1} = A \oplus A $, |
| + | relative to which $ A _ {1} $ |
| + | is an algebra. The algebra $ A $ |
| + | may be imbedded in $ A _ {1} $ |
| + | as a subalgebra: $ x \rightarrow ( x, 0) $, |
| + | and the involution $ * $ |
| + | extends to an involution in $ A _ {1} $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104020.png" /></td> </tr></table>
| + | $$ |
| + | ( a _ {1} , a _ {2} ) ^ {*} = \ |
| + | ( a _ {1} ^ {*} , - a _ {2} ). |
| + | $$ |
| | | |
| Moreover, | | Moreover, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104021.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm tr} ( a _ {1} , a _ {2} ) = \ |
| + | \mathop{\rm tr} ( a _ {1} ),\ \ |
| + | n ( a _ {1} , a _ {2} ) = \ |
| + | n ( a _ {1} ) + \delta n ( a _ {2} ). |
| + | $$ |
| | | |
− | The extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104022.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104023.png" /> can be repeated resulting in an ascending chain of algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104024.png" />; the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104025.png" /> need not be the same at each stage. If the Cayley–Dickson process is begun with an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104026.png" /> with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104027.png" />, multiplication table | + | The extension of $ A $ |
| + | to $ A _ {1} $ |
| + | can be repeated resulting in an ascending chain of algebras $ A \subset A _ {1} \subset A _ {2} \subset \dots $; |
| + | the parameter $ \delta $ |
| + | need not be the same at each stage. If the Cayley–Dickson process is begun with an algebra $ A $ |
| + | with basis $ \{ 1, u \} $, |
| + | multiplication table |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104028.png" /></td> </tr></table>
| + | $$ |
| + | u ^ {2} = u + \alpha ,\ \ |
| + | \alpha \in F,\ \ |
| + | 4 \alpha + 1 \neq 0, |
| + | $$ |
| | | |
− | and involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104030.png" />, the first application of the process yields an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104031.png" /> of generalized quaternions (an associative algebra of dimension 4), and the second — an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104032.png" />-dimensional algebra, known as a Cayley–Dickson algebra. | + | and involution $ 1 ^ {*} = 1 $, |
| + | $ u ^ {*} = 1 - u $, |
| + | the first application of the process yields an algebra $ A _ {1} $ |
| + | of generalized quaternions (an associative algebra of dimension 4), and the second — an $ 8 $- |
| + | dimensional algebra, known as a Cayley–Dickson algebra. |
| | | |
− | Any Cayley–Dickson algebra is an alternative, but non-associative, central simple algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104033.png" />; conversely, a simple alternative ring is either associative or a Cayley–Dickson algebra over its centre. The quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104034.png" /> in 8 variables defined on a Cayley–Dickson algebra (the 8 variables correspond to the basis elements) has the multiplicative property: | + | Any Cayley–Dickson algebra is an alternative, but non-associative, central simple algebra over $ F $; |
| + | conversely, a simple alternative ring is either associative or a Cayley–Dickson algebra over its centre. The quadratic form $ n ( x) $ |
| + | in 8 variables defined on a Cayley–Dickson algebra (the 8 variables correspond to the basis elements) has the multiplicative property: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104035.png" /></td> </tr></table>
| + | $$ |
| + | n ( xy) = \ |
| + | n ( x) \cdot n ( y). |
| + | $$ |
| | | |
− | This establishes a connection between Cayley–Dickson algebras and the existence problem for compositions of quadratic forms. A Cayley–Dickson algebra is a division algebra if and only if the quadratic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104036.png" /> (the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104037.png" />) does not represent the zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104039.png" /> is a field of characteristic other than 2, a Cayley–Dickson algebra has a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104040.png" /> with the following multiplication table:''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104041.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104042.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104043.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104044.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104045.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104046.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104047.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104048.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104049.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104050.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104051.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104052.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104053.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104054.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104055.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104056.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104057.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104058.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104059.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104060.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104061.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104062.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104063.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104064.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104065.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104066.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104067.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104068.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104069.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104070.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104071.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104072.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104073.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104074.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104075.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104076.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104077.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104078.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104079.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104080.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104081.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104082.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104083.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104084.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104085.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104086.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104087.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104088.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104089.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104090.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104091.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104092.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104093.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104094.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104095.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104096.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104097.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104098.png" /></td> <td colname="4" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c02104099.png" /></td> <td colname="5" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040100.png" /></td> <td colname="6" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040101.png" /></td> <td colname="7" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040102.png" /></td> <td colname="8" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040103.png" /></td> </tr> </tbody> </table> | + | This establishes a connection between Cayley–Dickson algebras and the existence problem for compositions of quadratic forms. A Cayley–Dickson algebra is a division algebra if and only if the quadratic form $ n ( x) $( |
| + | the norm of $ x $) |
| + | does not represent the zero in $ F $. |
| + | If $ F $ |
| + | is a field of characteristic other than 2, a Cayley–Dickson algebra has a basis $ \{ 1, u _ {1} \dots u _ {7} \} $ |
| + | with the following multiplication table:<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"></td> <td colname="2" style="background-color:white;" colspan="1"> $ u _ {1} $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ u _ {2} $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ u _ {3} $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ u _ {4} $ |
| + | </td> <td colname="6" style="background-color:white;" colspan="1"> $ u _ {5} $ |
| + | </td> <td colname="7" style="background-color:white;" colspan="1"> $ u _ {6} $ |
| + | </td> <td colname="8" style="background-color:white;" colspan="1"> $ u _ {7} $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {1} $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ -\alpha $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ u _ {3} $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ -\alpha u _ {2} $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ - u _ {5} $ |
| + | </td> <td colname="6" style="background-color:white;" colspan="1"> $ \alpha u _ {4} $ |
| + | </td> <td colname="7" style="background-color:white;" colspan="1"> $ - u _ {7} $ |
| + | </td> <td colname="8" style="background-color:white;" colspan="1"> $ \alpha u _ {6} $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {2} $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ - u _ {3} $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ -\beta $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ \beta u _ {1} $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ - u _ {6} $ |
| + | </td> <td colname="6" style="background-color:white;" colspan="1"> $ u _ {7} $ |
| + | </td> <td colname="7" style="background-color:white;" colspan="1"> $ \beta u _ {4} $ |
| + | </td> <td colname="8" style="background-color:white;" colspan="1"> $ -\beta u _ {5} $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {3} $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ \alpha u _ {2} $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ -\beta u _ {1} $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ -\alpha\beta $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ - u _ {7} $ |
| + | </td> <td colname="6" style="background-color:white;" colspan="1"> $ -\alpha u _ {6} $ |
| + | </td> <td colname="7" style="background-color:white;" colspan="1"> $ \beta u _ {5} $ |
| + | </td> <td colname="8" style="background-color:white;" colspan="1"> $ \alpha\beta u _ {4} $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {4} $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ u _ {5} $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ u _ {6} $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ u _ {7} $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ -\gamma $ |
| + | </td> <td colname="6" style="background-color:white;" colspan="1"> $ -\gamma u _ {1} $ |
| + | </td> <td colname="7" style="background-color:white;" colspan="1"> $ -\gamma u _ {2} $ |
| + | </td> <td colname="8" style="background-color:white;" colspan="1"> $ -\gamma u _ {3} $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {5} $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ -\alpha u _ {4} $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ - u _ {7} $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ \alpha u _ {6} $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \gamma u _ {1} $ |
| + | </td> <td colname="6" style="background-color:white;" colspan="1"> $ -\alpha\gamma $ |
| + | </td> <td colname="7" style="background-color:white;" colspan="1"> $ -\alpha u _ {3} $ |
| + | </td> <td colname="8" style="background-color:white;" colspan="1"> $ \alpha\gamma u _ {4} $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {6} $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ u _ {7} $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ -\beta u _ {4} $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ -\beta u _ {5} $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \gamma u _ {2} $ |
| + | </td> <td colname="6" style="background-color:white;" colspan="1"> $ \gamma u _ {3} $ |
| + | </td> <td colname="7" style="background-color:white;" colspan="1"> $ -\beta\gamma $ |
| + | </td> <td colname="8" style="background-color:white;" colspan="1"> $ -\beta\gamma u _ {1} $ |
| + | </td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $ u _ {7} $ |
| + | </td> <td colname="2" style="background-color:white;" colspan="1"> $ -\alpha u _ {6} $ |
| + | </td> <td colname="3" style="background-color:white;" colspan="1"> $ \beta u _ {5} $ |
| + | </td> <td colname="4" style="background-color:white;" colspan="1"> $ -\alpha \beta u _ {4} $ |
| + | </td> <td colname="5" style="background-color:white;" colspan="1"> $ \gamma u _ {3} $ |
| + | </td> <td colname="6" style="background-color:white;" colspan="1"> $ -\alpha \gamma u _ {2} $ |
| + | </td> <td colname="7" style="background-color:white;" colspan="1"> $ \beta\gamma u _ {1} $ |
| + | </td> <td colname="8" style="background-color:white;" colspan="1"> $ -\alpha\beta\gamma $ |
| + | </td> </tr> </tbody> </table> |
| | | |
| </td></tr> </table> | | </td></tr> </table> |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040105.png" />, and the involution is defined by the conditions | + | where $ \alpha , \beta , \gamma \in F $, |
| + | $ \alpha \beta \gamma \neq 0 $, |
| + | and the involution is defined by the conditions |
| + | |
| + | $$ |
| + | 1 ^ {*} = 1,\ \ |
| + | u _ {i} ^ {*} = - u _ {i} ,\ \ |
| + | i = 1 \dots 7. |
| + | $$ |
| + | |
| + | This algebra is denoted by $ A ( \alpha , \beta , \gamma ) $. |
| + | The algebras $ A ( \alpha , \beta , \gamma ) $ |
| + | and $ A ( \alpha ^ \prime , \beta ^ \prime , \gamma ^ \prime ) $ |
| + | are isomorphic if and only if their quadratic forms $ n ( x) $ |
| + | are equivalent. If $ n ( x) $ |
| + | represents zero, the corresponding Cayley–Dickson algebra is isomorphic to $ A (- 1, 1, 1) $, |
| + | which is known as the Cayley splitting algebra, or the vector-matrix algebra. Its elements may be expressed as matrices |
| + | |
| + | $$ |
| + | \left \| |
| + | |
| + | \begin{array}{cc} |
| + | \alpha & a \\ |
| + | b &\beta \\ |
| + | \end{array} |
| + | \ |
| + | \right \| , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040106.png" /></td> </tr></table>
| + | where $ \alpha , \beta \in F $, |
| + | $ a, b \in V $, |
| + | with $ V $ |
| + | a three-dimensional space over $ F $ |
| + | with the usual definition of the scalar product $ \langle a, b \rangle $ |
| + | and vector product $ a \times b $. |
| + | Matrix multiplication is defined by |
| | | |
− | This algebra is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040107.png" />. The algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040108.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040109.png" /> are isomorphic if and only if their quadratic forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040110.png" /> are equivalent. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040111.png" /> represents zero, the corresponding Cayley–Dickson algebra is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040112.png" />, which is known as the Cayley splitting algebra, or the vector-matrix algebra. Its elements may be expressed as matrices
| + | $$ |
| + | \left \| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040113.png" /></td> </tr></table>
| + | \begin{array}{cc} |
| + | \alpha & a \\ |
| + | b &\beta \\ |
| + | \end{array} |
| + | \ |
| + | \right \| \ |
| + | \left \| |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040114.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040115.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040116.png" /> a three-dimensional space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040117.png" /> with the usual definition of the scalar product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040118.png" /> and vector product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040119.png" />. Matrix multiplication is defined by
| + | \begin{array}{cc} |
| + | \gamma & c \\ |
| + | d &\delta \\ |
| + | \end{array} |
| + | \ |
| + | \right \| = \ |
| + | \left \| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040120.png" /></td> </tr></table>
| + | \begin{array}{cc} |
| + | \alpha \gamma - \langle a, d \rangle &\alpha c + \delta a + b \times d \\ |
| + | \gamma b + \beta d + a \times c &\beta \delta - \langle b, c \rangle \\ |
| + | \end{array} |
| + | \ |
| + | \right \| . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040121.png" /> is the real field, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040122.png" /> is the algebra of [[Cayley numbers|Cayley numbers]] (a division algebra). Any Cayley–Dickson algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040123.png" /> is isomorphic to either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040124.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040125.png" />. | + | If $ F = \mathbf R $ |
| + | is the real field, then $ A ( 1, 1, 1) $ |
| + | is the algebra of [[Cayley numbers|Cayley numbers]] (a division algebra). Any Cayley–Dickson algebra over $ \mathbf R $ |
| + | is isomorphic to either $ A ( 1, 1, 1) $ |
| + | or $ A (- 1, 1, 1) $. |
| | | |
| The construction of Cayley–Dickson algebras over an arbitrary field is due to L.E. Dickson, who also investigated their fundamental properties (see [[#References|[1]]], [[#References|[2]]]). | | The construction of Cayley–Dickson algebras over an arbitrary field is due to L.E. Dickson, who also investigated their fundamental properties (see [[#References|[1]]], [[#References|[2]]]). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040126.png" /> be an alternative ring whose associative-commutative centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040127.png" /> is distinct from zero and does not contain zero divisors; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040128.png" /> be the field of fractions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040129.png" />. Then there is a natural imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040130.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040131.png" /> is a Cayley–Dickson algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040132.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021040/c021040133.png" /> is known as a Cayley–Dickson ring. | + | Let $ A $ |
| + | be an alternative ring whose associative-commutative centre $ C $ |
| + | is distinct from zero and does not contain zero divisors; let $ F $ |
| + | be the field of fractions of $ C $. |
| + | Then there is a natural imbedding $ A \rightarrow A \otimes _ {C} F $. |
| + | If $ A \otimes _ {C} F $ |
| + | is a Cayley–Dickson algebra over $ F $, |
| + | then $ A $ |
| + | is known as a Cayley–Dickson ring. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.E. Dickson, "Linear algebras" , Cambridge Univ. Press (1930)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.D. Schafer, "An introduction to nonassociative algebras" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, "Rings that are nearly associative" , Acad. Press (1982) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.E. Dickson, "Linear algebras" , Cambridge Univ. Press (1930)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.D. Schafer, "An introduction to nonassociative algebras" , Acad. Press (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, "Rings that are nearly associative" , Acad. Press (1982) (Translated from Russian)</TD></TR></table> |
An alternative $ 8 $-
dimensional algebra, derived from the algebra of generalized quaternions via the Cayley–Dickson process (cf. Quaternion and Alternative rings and algebras). The latter starts out from a given algebra $ A $
to construct a new algebra $ A _ {1} $(
of twice the dimension of $ A $)
and is a generalization of the doubling process (see Hypercomplex number). Namely, let $ A $
be an algebra with a unit 1 over a field $ F $,
let $ \delta $
be some non-zero element of $ F $,
and let $ x \rightarrow x ^ {*} $
be an $ F $-
linear mapping which is an involution, and such that
$$
x + x ^ {*} = \
\mathop{\rm tr} ( x) \in F,\ \
xx ^ {*} = \
n ( x) \in F.
$$
The formula
$$
( a _ {1} , a _ {2} )
( b _ {1} , b _ {2} ) = \
( a _ {1} b _ {1} -
\delta b _ {2} a _ {2} ^ {*} ,\
a _ {1} ^ {*} b _ {2} +
b _ {1} a _ {2} )
$$
now defines a multiplication operation on the direct sum of linear spaces $ A _ {1} = A \oplus A $,
relative to which $ A _ {1} $
is an algebra. The algebra $ A $
may be imbedded in $ A _ {1} $
as a subalgebra: $ x \rightarrow ( x, 0) $,
and the involution $ * $
extends to an involution in $ A _ {1} $:
$$
( a _ {1} , a _ {2} ) ^ {*} = \
( a _ {1} ^ {*} , - a _ {2} ).
$$
Moreover,
$$
\mathop{\rm tr} ( a _ {1} , a _ {2} ) = \
\mathop{\rm tr} ( a _ {1} ),\ \
n ( a _ {1} , a _ {2} ) = \
n ( a _ {1} ) + \delta n ( a _ {2} ).
$$
The extension of $ A $
to $ A _ {1} $
can be repeated resulting in an ascending chain of algebras $ A \subset A _ {1} \subset A _ {2} \subset \dots $;
the parameter $ \delta $
need not be the same at each stage. If the Cayley–Dickson process is begun with an algebra $ A $
with basis $ \{ 1, u \} $,
multiplication table
$$
u ^ {2} = u + \alpha ,\ \
\alpha \in F,\ \
4 \alpha + 1 \neq 0,
$$
and involution $ 1 ^ {*} = 1 $,
$ u ^ {*} = 1 - u $,
the first application of the process yields an algebra $ A _ {1} $
of generalized quaternions (an associative algebra of dimension 4), and the second — an $ 8 $-
dimensional algebra, known as a Cayley–Dickson algebra.
Any Cayley–Dickson algebra is an alternative, but non-associative, central simple algebra over $ F $;
conversely, a simple alternative ring is either associative or a Cayley–Dickson algebra over its centre. The quadratic form $ n ( x) $
in 8 variables defined on a Cayley–Dickson algebra (the 8 variables correspond to the basis elements) has the multiplicative property:
$$
n ( xy) = \
n ( x) \cdot n ( y).
$$
This establishes a connection between Cayley–Dickson algebras and the existence problem for compositions of quadratic forms. A Cayley–Dickson algebra is a division algebra if and only if the quadratic form $ n ( x) $(
the norm of $ x $)
does not represent the zero in $ F $.
If $ F $
is a field of characteristic other than 2, a Cayley–Dickson algebra has a basis $ \{ 1, u _ {1} \dots u _ {7} \} $
with the following multiplication table:
<tbody> </tbody> | $ u _ {1} $
| $ u _ {2} $
| $ u _ {3} $
| $ u _ {4} $
| $ u _ {5} $
| $ u _ {6} $
| $ u _ {7} $
| $ u _ {1} $
| $ -\alpha $
| $ u _ {3} $
| $ -\alpha u _ {2} $
| $ - u _ {5} $
| $ \alpha u _ {4} $
| $ - u _ {7} $
| $ \alpha u _ {6} $
| $ u _ {2} $
| $ - u _ {3} $
| $ -\beta $
| $ \beta u _ {1} $
| $ - u _ {6} $
| $ u _ {7} $
| $ \beta u _ {4} $
| $ -\beta u _ {5} $
| $ u _ {3} $
| $ \alpha u _ {2} $
| $ -\beta u _ {1} $
| $ -\alpha\beta $
| $ - u _ {7} $
| $ -\alpha u _ {6} $
| $ \beta u _ {5} $
| $ \alpha\beta u _ {4} $
| $ u _ {4} $
| $ u _ {5} $
| $ u _ {6} $
| $ u _ {7} $
| $ -\gamma $
| $ -\gamma u _ {1} $
| $ -\gamma u _ {2} $
| $ -\gamma u _ {3} $
| $ u _ {5} $
| $ -\alpha u _ {4} $
| $ - u _ {7} $
| $ \alpha u _ {6} $
| $ \gamma u _ {1} $
| $ -\alpha\gamma $
| $ -\alpha u _ {3} $
| $ \alpha\gamma u _ {4} $
| $ u _ {6} $
| $ u _ {7} $
| $ -\beta u _ {4} $
| $ -\beta u _ {5} $
| $ \gamma u _ {2} $
| $ \gamma u _ {3} $
| $ -\beta\gamma $
| $ -\beta\gamma u _ {1} $
| $ u _ {7} $
| $ -\alpha u _ {6} $
| $ \beta u _ {5} $
| $ -\alpha \beta u _ {4} $
| $ \gamma u _ {3} $
| $ -\alpha \gamma u _ {2} $
| $ \beta\gamma u _ {1} $
| $ -\alpha\beta\gamma $
|
|
where $ \alpha , \beta , \gamma \in F $,
$ \alpha \beta \gamma \neq 0 $,
and the involution is defined by the conditions
$$
1 ^ {*} = 1,\ \
u _ {i} ^ {*} = - u _ {i} ,\ \
i = 1 \dots 7.
$$
This algebra is denoted by $ A ( \alpha , \beta , \gamma ) $.
The algebras $ A ( \alpha , \beta , \gamma ) $
and $ A ( \alpha ^ \prime , \beta ^ \prime , \gamma ^ \prime ) $
are isomorphic if and only if their quadratic forms $ n ( x) $
are equivalent. If $ n ( x) $
represents zero, the corresponding Cayley–Dickson algebra is isomorphic to $ A (- 1, 1, 1) $,
which is known as the Cayley splitting algebra, or the vector-matrix algebra. Its elements may be expressed as matrices
$$
\left \|
\begin{array}{cc}
\alpha & a \\
b &\beta \\
\end{array}
\
\right \| ,
$$
where $ \alpha , \beta \in F $,
$ a, b \in V $,
with $ V $
a three-dimensional space over $ F $
with the usual definition of the scalar product $ \langle a, b \rangle $
and vector product $ a \times b $.
Matrix multiplication is defined by
$$
\left \|
\begin{array}{cc}
\alpha & a \\
b &\beta \\
\end{array}
\
\right \| \
\left \|
\begin{array}{cc}
\gamma & c \\
d &\delta \\
\end{array}
\
\right \| = \
\left \|
\begin{array}{cc}
\alpha \gamma - \langle a, d \rangle &\alpha c + \delta a + b \times d \\
\gamma b + \beta d + a \times c &\beta \delta - \langle b, c \rangle \\
\end{array}
\
\right \| .
$$
If $ F = \mathbf R $
is the real field, then $ A ( 1, 1, 1) $
is the algebra of Cayley numbers (a division algebra). Any Cayley–Dickson algebra over $ \mathbf R $
is isomorphic to either $ A ( 1, 1, 1) $
or $ A (- 1, 1, 1) $.
The construction of Cayley–Dickson algebras over an arbitrary field is due to L.E. Dickson, who also investigated their fundamental properties (see [1], [2]).
Let $ A $
be an alternative ring whose associative-commutative centre $ C $
is distinct from zero and does not contain zero divisors; let $ F $
be the field of fractions of $ C $.
Then there is a natural imbedding $ A \rightarrow A \otimes _ {C} F $.
If $ A \otimes _ {C} F $
is a Cayley–Dickson algebra over $ F $,
then $ A $
is known as a Cayley–Dickson ring.
References
[1] | L.E. Dickson, "Linear algebras" , Cambridge Univ. Press (1930) |
[2] | R.D. Schafer, "An introduction to nonassociative algebras" , Acad. Press (1966) |
[3] | K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov, "Rings that are nearly associative" , Acad. Press (1982) (Translated from Russian) |