Namespaces
Variants
Actions

Difference between revisions of "Cartan lemma"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
If for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205201.png" /> linear forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205202.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205203.png" />, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205204.png" /> variables the sum of the exterior products vanishes
+
<!--
 +
c0205201.png
 +
$#A+1 = 9 n = 0
 +
$#C+1 = 9 : ~/encyclopedia/old_files/data/C020/C.0200520 Cartan lemma
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205205.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205206.png" /> are linearly independent, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205207.png" /> are linear combinations of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205208.png" /> with symmetric coefficients:
+
If for  $  2p $
 +
linear forms  $  \phi _ {i} , \sigma  ^ {i} $,
 +
$  i = 1 \dots n $,  
 +
in  $  n $
 +
variables the sum of the exterior products vanishes
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020520/c0205209.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { p }
 +
\phi _ {i} \wedge \sigma  ^ {i}  = 0,
 +
$$
 +
 
 +
and if the  $  \sigma  ^ {i} $
 +
are linearly independent, then the  $  \phi _ {i} $
 +
are linear combinations of the  $  \sigma  ^ {i} $
 +
with symmetric coefficients:
 +
 
 +
$$
 +
\phi _ {i}  = \sum
 +
a _ {ij} \sigma  ^ {j} ,\ \
 +
a _ {ij}  = a _ {ji} .
 +
$$
  
 
Proved by E. Cartan in 1899.
 
Proved by E. Cartan in 1899.
Line 11: Line 37:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "Les systèmes différentielles extérieurs et leur applications géométriques" , Hermann  (1945)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "Les systèmes différentielles extérieurs et leur applications géométriques" , Hermann  (1945)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 10:08, 4 June 2020


If for $ 2p $ linear forms $ \phi _ {i} , \sigma ^ {i} $, $ i = 1 \dots n $, in $ n $ variables the sum of the exterior products vanishes

$$ \sum _ {i = 1 } ^ { p } \phi _ {i} \wedge \sigma ^ {i} = 0, $$

and if the $ \sigma ^ {i} $ are linearly independent, then the $ \phi _ {i} $ are linear combinations of the $ \sigma ^ {i} $ with symmetric coefficients:

$$ \phi _ {i} = \sum a _ {ij} \sigma ^ {j} ,\ \ a _ {ij} = a _ {ji} . $$

Proved by E. Cartan in 1899.

References

[1] E. Cartan, "Les systèmes différentielles extérieurs et leur applications géométriques" , Hermann (1945)

Comments

The original paper containing this result is [a1].

References

[a1] E. Cartan, "Sur certaines expressions différentielles et le problème de Pfaff" Ann. Ec. Norm. (3) , 16 (1899) pp. 239–332
How to Cite This Entry:
Cartan lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cartan_lemma&oldid=12449
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article