Difference between revisions of "Carnot theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0204901.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/C020/C.0200490 Carnot theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A theorem on the product of the simple ratios in which the points of intersection of an algebraic curve with the sides of a triangle divide these sides. Suppose that the algebraic curve $ l $ | |
+ | of order $ n $ | ||
+ | does not pass through any of the vertices of a triangle $ A B C $ | ||
+ | and intersects each side, extended if necessary, at $ n $ | ||
+ | points: the side $ A B $ | ||
+ | at the points $ C _ {1} \dots C _ {n} $; | ||
+ | the side $ B C $ | ||
+ | at the points $ A _ {1} \dots A _ {n} $; | ||
+ | and the side $ C A $ | ||
+ | at the points $ B _ {1} \dots B _ {n} $. | ||
+ | Then the product of the $ 3 n $ | ||
+ | simple ratios | ||
− | + | $$ | |
− | + | \frac{ {A C _ {i} } ^ \rightarrow }{ {C _ {i} B } ^ \rightarrow } | |
+ | ,\ \ | ||
− | is equal to | + | \frac{ {B A _ {i} } ^ \rightarrow }{ {A _ {i} C } ^ \rightarrow } |
+ | ,\ \ | ||
+ | |||
+ | \frac{ {C B _ {i} } ^ \rightarrow }{ {B _ {i} A } ^ \rightarrow } | ||
+ | ,\ \ | ||
+ | i = 1 \dots n , | ||
+ | $$ | ||
+ | |||
+ | is equal to $ - 1 $ | ||
+ | if $ n $ | ||
+ | is odd, and $ + 1 $ | ||
+ | if $ n $ | ||
+ | is even. | ||
+ | |||
+ | This statement is equivalent to the following: The product of the $ 3 n $ | ||
+ | ratios | ||
+ | |||
+ | $$ | ||
+ | |||
+ | \frac{ {C _ {i} A } ^ \rightarrow }{ {C _ {i} B } ^ \rightarrow } | ||
+ | ,\ \ | ||
+ | |||
+ | \frac{ {A _ {i} B } ^ \rightarrow }{ {A _ {i} C } ^ \rightarrow } | ||
+ | ,\ \ | ||
+ | |||
+ | \frac{ {B _ {i} C } ^ \rightarrow }{ {B _ {i} A } ^ \rightarrow } | ||
+ | ,\ \ | ||
+ | i = 1 \dots n , | ||
+ | $$ | ||
+ | |||
+ | is equal to $ + 1 $. | ||
A special case of this theorem was proved by L. Carnot [[#References|[1]]]. | A special case of this theorem was proved by L. Carnot [[#References|[1]]]. | ||
− | If | + | If $ l $ |
+ | is a straight line then the [[Menelaus theorem|Menelaus theorem]] is obtained. A generalization of Carnot's theorem is: Suppose that an algebraic curve of order $ n $ | ||
+ | intersects each of the straight lines $ A _ {i} A _ {i+1} $, | ||
+ | $ i = 1 \dots m $, | ||
+ | $ A _ {m+1} = A _ {1} $, | ||
+ | lying in the plane of this curve, at exactly $ n $ | ||
+ | points $ B _ {ij} $, | ||
+ | $ i = 1 \dots m $; | ||
+ | $ j = 1 \dots n $. | ||
+ | Then | ||
+ | |||
+ | $$ | ||
+ | \prod _ { i,j } | ||
− | + | \frac{ {A _ {i} B _ {ij} } ^ \rightarrow }{ {B _ {ij} A _ {i+1} } ^ \rightarrow } | |
+ | \ | ||
+ | = ( - 1 ) ^ {mn} . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Carnot, "Géométrie de position" , Paris (1803)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Carnot, "Géométrie de position" , Paris (1803)</TD></TR></table> |
Latest revision as of 10:08, 4 June 2020
A theorem on the product of the simple ratios in which the points of intersection of an algebraic curve with the sides of a triangle divide these sides. Suppose that the algebraic curve $ l $
of order $ n $
does not pass through any of the vertices of a triangle $ A B C $
and intersects each side, extended if necessary, at $ n $
points: the side $ A B $
at the points $ C _ {1} \dots C _ {n} $;
the side $ B C $
at the points $ A _ {1} \dots A _ {n} $;
and the side $ C A $
at the points $ B _ {1} \dots B _ {n} $.
Then the product of the $ 3 n $
simple ratios
$$ \frac{ {A C _ {i} } ^ \rightarrow }{ {C _ {i} B } ^ \rightarrow } ,\ \ \frac{ {B A _ {i} } ^ \rightarrow }{ {A _ {i} C } ^ \rightarrow } ,\ \ \frac{ {C B _ {i} } ^ \rightarrow }{ {B _ {i} A } ^ \rightarrow } ,\ \ i = 1 \dots n , $$
is equal to $ - 1 $ if $ n $ is odd, and $ + 1 $ if $ n $ is even.
This statement is equivalent to the following: The product of the $ 3 n $ ratios
$$ \frac{ {C _ {i} A } ^ \rightarrow }{ {C _ {i} B } ^ \rightarrow } ,\ \ \frac{ {A _ {i} B } ^ \rightarrow }{ {A _ {i} C } ^ \rightarrow } ,\ \ \frac{ {B _ {i} C } ^ \rightarrow }{ {B _ {i} A } ^ \rightarrow } ,\ \ i = 1 \dots n , $$
is equal to $ + 1 $.
A special case of this theorem was proved by L. Carnot [1].
If $ l $ is a straight line then the Menelaus theorem is obtained. A generalization of Carnot's theorem is: Suppose that an algebraic curve of order $ n $ intersects each of the straight lines $ A _ {i} A _ {i+1} $, $ i = 1 \dots m $, $ A _ {m+1} = A _ {1} $, lying in the plane of this curve, at exactly $ n $ points $ B _ {ij} $, $ i = 1 \dots m $; $ j = 1 \dots n $. Then
$$ \prod _ { i,j } \frac{ {A _ {i} B _ {ij} } ^ \rightarrow }{ {B _ {ij} A _ {i+1} } ^ \rightarrow } \ = ( - 1 ) ^ {mn} . $$
References
[1] | L. Carnot, "Géométrie de position" , Paris (1803) |
Carnot theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carnot_theorem&oldid=11853