Namespaces
Variants
Actions

Difference between revisions of "Carleson set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204401.png" /> on which every function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204402.png" /> defined and continuous on this set is representable by a series of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204403.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204404.png" />. Introduced by L. Carleson [[#References|[1]]]. Carleson sets form an important class of so-called thin sets (cf. [[Fine set|Fine set]]; [[Thinness of a set|Thinness of a set]]). In order that a closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204405.png" /> be a Carleson set, it is necessary and sufficient that there exists a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204406.png" /> such that the Fourier–Stieltjes coefficients
+
<!--
 +
c0204401.png
 +
$#A+1 = 15 n = 0
 +
$#C+1 = 15 : ~/encyclopedia/old_files/data/C020/C.0200440 Carleson set
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204407.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
of each measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204408.png" /> concentrated on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c0204409.png" /> satisfy the inequality
+
A closed set  $  E \subset  [0, 2 \pi ) $
 +
on which every function  $  f (t) $
 +
defined and continuous on this set is representable by a series of the form  $  \sum _ {n = 0 }  ^  \infty  a _ {n} e ^ {i n t } $,
 +
where  $  \sum _ {n = 1 }  ^  \infty  | a _ {n} | < + \infty $.  
 +
Introduced by L. Carleson [[#References|[1]]]. Carleson sets form an important class of so-called thin sets (cf. [[Fine set|Fine set]]; [[Thinness of a set|Thinness of a set]]). In order that a closed set  $  E \subset  [0, 2 \pi ) $
 +
be a Carleson set, it is necessary and sufficient that there exists a constant  $  c > 0 $
 +
such that the Fourier–Stieltjes coefficients
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c02044010.png" /></td> </tr></table>
+
$$
 +
c _ {n} ( \mu )  = \
 +
{
 +
\frac{1}{2 \pi }
 +
}
 +
\int\limits _ { 0 } ^ { {2 }  \pi }
 +
e ^ {-i n t } \
 +
d \mu (t),\ \
 +
n = 0, \pm  1 \dots
 +
$$
 +
 
 +
of each measure  $  \mu $
 +
concentrated on  $  E $
 +
satisfy the inequality
 +
 
 +
$$
 +
\sup _ {n \geq  0 } \
 +
| c _ {n} ( \mu ) |  >  c
 +
\int\limits _ { 0 } ^ { {2 }  \pi }
 +
| d \mu (t) | .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Carleson,  "Sets of uniqueness for functions regular in the unit circle"  ''Acta Math.'' , '''87''' :  3–4  (1952)  pp. 325–345</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I. Wik,  "On linear dependence in closed sets"  ''Arkiv. Mat.'' , '''4''' :  2–3  (1960)  pp. 209–218</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.-P. Kahane,  R. Salem,  "Ensembles parfaits et séries trigonométriques" , Hermann  (1963)  pp. 142</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.-P. Kahane,  "Séries de Fourier absolument convergentes" , Springer  (1970)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L. Carleson,  "Sets of uniqueness for functions regular in the unit circle"  ''Acta Math.'' , '''87''' :  3–4  (1952)  pp. 325–345</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I. Wik,  "On linear dependence in closed sets"  ''Arkiv. Mat.'' , '''4''' :  2–3  (1960)  pp. 209–218</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.-P. Kahane,  R. Salem,  "Ensembles parfaits et séries trigonométriques" , Hermann  (1963)  pp. 142</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.-P. Kahane,  "Séries de Fourier absolument convergentes" , Springer  (1970)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
A closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c02044011.png" /> is called a Helson set if every function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c02044012.png" /> defined and continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c02044013.png" /> is representable by a series of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c02044014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c020/c020440/c02044015.png" />; see [[#References|[a1]]]. Obviously, every Carleson set is a Helson set. I. Wik proved the surprising result that, conversely, every Helson set is a Carleson set; see [[#References|[2]]]. So the two notions amount to the same.
+
A closed set $  E \subset  [0, 2 \pi ) $
 +
is called a Helson set if every function $  f (t) $
 +
defined and continuous on $  E $
 +
is representable by a series of the form $  \sum _ {n = - \infty }  ^  \infty  a _ {n} e ^ {i n t } $,  
 +
where $  \sum _ {n = - \infty }  ^  \infty  | a _ {n} | < \infty $;  
 +
see [[#References|[a1]]]. Obviously, every Carleson set is a Helson set. I. Wik proved the surprising result that, conversely, every Helson set is a Carleson set; see [[#References|[2]]]. So the two notions amount to the same.
  
 
Using a technique of S.W. Drury, N.Th. Varopoulos proved in 1970 that the union of two Helson sets is again a Helson set; see [[#References|[a2]]].
 
Using a technique of S.W. Drury, N.Th. Varopoulos proved in 1970 that the union of two Helson sets is again a Helson set; see [[#References|[a2]]].

Latest revision as of 10:23, 2 June 2020


A closed set $ E \subset [0, 2 \pi ) $ on which every function $ f (t) $ defined and continuous on this set is representable by a series of the form $ \sum _ {n = 0 } ^ \infty a _ {n} e ^ {i n t } $, where $ \sum _ {n = 1 } ^ \infty | a _ {n} | < + \infty $. Introduced by L. Carleson [1]. Carleson sets form an important class of so-called thin sets (cf. Fine set; Thinness of a set). In order that a closed set $ E \subset [0, 2 \pi ) $ be a Carleson set, it is necessary and sufficient that there exists a constant $ c > 0 $ such that the Fourier–Stieltjes coefficients

$$ c _ {n} ( \mu ) = \ { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } e ^ {-i n t } \ d \mu (t),\ \ n = 0, \pm 1 \dots $$

of each measure $ \mu $ concentrated on $ E $ satisfy the inequality

$$ \sup _ {n \geq 0 } \ | c _ {n} ( \mu ) | > c \int\limits _ { 0 } ^ { {2 } \pi } | d \mu (t) | . $$

References

[1] L. Carleson, "Sets of uniqueness for functions regular in the unit circle" Acta Math. , 87 : 3–4 (1952) pp. 325–345
[2] I. Wik, "On linear dependence in closed sets" Arkiv. Mat. , 4 : 2–3 (1960) pp. 209–218
[3] J.-P. Kahane, R. Salem, "Ensembles parfaits et séries trigonométriques" , Hermann (1963) pp. 142
[4] J.-P. Kahane, "Séries de Fourier absolument convergentes" , Springer (1970)

Comments

A closed set $ E \subset [0, 2 \pi ) $ is called a Helson set if every function $ f (t) $ defined and continuous on $ E $ is representable by a series of the form $ \sum _ {n = - \infty } ^ \infty a _ {n} e ^ {i n t } $, where $ \sum _ {n = - \infty } ^ \infty | a _ {n} | < \infty $; see [a1]. Obviously, every Carleson set is a Helson set. I. Wik proved the surprising result that, conversely, every Helson set is a Carleson set; see [2]. So the two notions amount to the same.

Using a technique of S.W. Drury, N.Th. Varopoulos proved in 1970 that the union of two Helson sets is again a Helson set; see [a2].

References

[a1] H. Helson, "Fourier transforms on perfect sets" Studia Math. , 14 (1954) pp. 209–213
[a2] N.Th. Varopoulos, "Sur la réunion de deux ensembles de Helson" C.R. Acad. Sci. Paris Sér. A-B , 271 (1970) pp. A251-A253
How to Cite This Entry:
Carleson set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Carleson_set&oldid=16437
This article was adapted from an original article by B.I. Golubov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article